Structure, site-specific magnetism, and magnetotransport properties of epitaxial D022-structure Mn2FexGa thin films

Structure, site-specific magnetism, and magnetotransport properties of epitaxial D022-structure... Ferrimagnetic Mn2FexGa(0.26≤x≤1.12) thin films have been characterized by x-ray diffraction, magnetometry, x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and Mössbauer spectroscopy with the aim of determining the structure and site-specific magnetism of this tetragonal, D022-structure Heusler compound. High-quality epitaxial films with low root-mean-square surface roughness (∼0.6 nm) are grown by magnetron cosputtering. The tetragonal distortion induces strong perpendicular magnetic anisotropy along the c axis with a typical coercive field μ0H∼0.8T and an anisotropy field ranging from 6 to 8 T. On increasing the Fe content x, substantial uniaxial anisotropy, Ku≥1.0MJm−3, can be maintained over the full x range, while the magnetization of the compound is reduced from 400 to 280kAm−1. The total magnetization is almost entirely given by the sum of the spin moments originating from the ferrimagnetic Mn and Fe sublattices, with the latter being coupled ferromagnetically to one of the former. The orbital magnetic moments are practically quenched and have negligible contributions to the magnetization. The films with x=0.73 exhibit an anomalous Hall angle of 2.5% and a Fermi-level spin polarization above 51%, as measured by point contact Andreev reflection. The Fe-substituted Mn2Ga films are tunable with a unique combination of high anisotropy, low magnetization, appreciable spin polarization, and low surface roughness, making them strong candidates for thermally stable spin-transfer-torque switching nanomagnets with lateral dimensions down to 10 nm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Structure, site-specific magnetism, and magnetotransport properties of epitaxial D022-structure Mn2FexGa thin films

Preview Only

Structure, site-specific magnetism, and magnetotransport properties of epitaxial D022-structure Mn2FexGa thin films

Abstract

Ferrimagnetic Mn2FexGa(0.26≤x≤1.12) thin films have been characterized by x-ray diffraction, magnetometry, x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and Mössbauer spectroscopy with the aim of determining the structure and site-specific magnetism of this tetragonal, D022-structure Heusler compound. High-quality epitaxial films with low root-mean-square surface roughness (∼0.6 nm) are grown by magnetron cosputtering. The tetragonal distortion induces strong perpendicular magnetic anisotropy along the c axis with a typical coercive field μ0H∼0.8T and an anisotropy field ranging from 6 to 8 T. On increasing the Fe content x, substantial uniaxial anisotropy, Ku≥1.0MJm−3, can be maintained over the full x range, while the magnetization of the compound is reduced from 400 to 280kAm−1. The total magnetization is almost entirely given by the sum of the spin moments originating from the ferrimagnetic Mn and Fe sublattices, with the latter being coupled ferromagnetically to one of the former. The orbital magnetic moments are practically quenched and have negligible contributions to the magnetization. The films with x=0.73 exhibit an anomalous Hall angle of 2.5% and a Fermi-level spin polarization above 51%, as measured by point contact Andreev reflection. The Fe-substituted Mn2Ga films are tunable with a unique combination of high anisotropy, low magnetization, appreciable spin polarization, and low surface roughness, making them strong candidates for thermally stable spin-transfer-torque switching nanomagnets with lateral dimensions down to 10 nm.
Loading next page...
 
/lp/aps_physical/structure-site-specific-magnetism-and-magnetotransport-properties-of-k7pss3mWEx
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.024408
Publisher site
See Article on Publisher Site

Abstract

Ferrimagnetic Mn2FexGa(0.26≤x≤1.12) thin films have been characterized by x-ray diffraction, magnetometry, x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and Mössbauer spectroscopy with the aim of determining the structure and site-specific magnetism of this tetragonal, D022-structure Heusler compound. High-quality epitaxial films with low root-mean-square surface roughness (∼0.6 nm) are grown by magnetron cosputtering. The tetragonal distortion induces strong perpendicular magnetic anisotropy along the c axis with a typical coercive field μ0H∼0.8T and an anisotropy field ranging from 6 to 8 T. On increasing the Fe content x, substantial uniaxial anisotropy, Ku≥1.0MJm−3, can be maintained over the full x range, while the magnetization of the compound is reduced from 400 to 280kAm−1. The total magnetization is almost entirely given by the sum of the spin moments originating from the ferrimagnetic Mn and Fe sublattices, with the latter being coupled ferromagnetically to one of the former. The orbital magnetic moments are practically quenched and have negligible contributions to the magnetization. The films with x=0.73 exhibit an anomalous Hall angle of 2.5% and a Fermi-level spin polarization above 51%, as measured by point contact Andreev reflection. The Fe-substituted Mn2Ga films are tunable with a unique combination of high anisotropy, low magnetization, appreciable spin polarization, and low surface roughness, making them strong candidates for thermally stable spin-transfer-torque switching nanomagnets with lateral dimensions down to 10 nm.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off