Strong-coupling Bose polarons in a Bose-Einstein condensate

Strong-coupling Bose polarons in a Bose-Einstein condensate We use a nonperturbative renormalization group approach to develop a unified picture of the Bose polaron problem, where a mobile impurity is strongly interacting with a surrounding Bose-Einstein condensate (BEC). A detailed theoretical analysis of the phase diagram is presented and the polaron-to-molecule transition is discussed. For attractive polarons we argue that a description in terms of an effective Fröhlich Hamiltonian with renormalized parameters is possible. Its strong-coupling regime is realized close to a Feshbach resonance, where we predict a sharp increase of the effective mass. Already for weaker interactions, before the polaron mass diverges, we predict a transition to a regime where states exist below the polaron energy and the attractive polaron is no longer the ground state. On the repulsive side of the Feshbach resonance we recover the repulsive polaron, which has a finite lifetime because it can decay into low-lying molecular states. We show for the entire range of couplings that the polaron energy has logarithmic corrections in comparison with predictions by the mean-field approach. We demonstrate that they are a consequence of the polaronic mass renormalization which is due to quantum fluctuations of correlated phonons in the polaron cloud. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Strong-coupling Bose polarons in a Bose-Einstein condensate

Preview Only

Strong-coupling Bose polarons in a Bose-Einstein condensate

Abstract

We use a nonperturbative renormalization group approach to develop a unified picture of the Bose polaron problem, where a mobile impurity is strongly interacting with a surrounding Bose-Einstein condensate (BEC). A detailed theoretical analysis of the phase diagram is presented and the polaron-to-molecule transition is discussed. For attractive polarons we argue that a description in terms of an effective Fröhlich Hamiltonian with renormalized parameters is possible. Its strong-coupling regime is realized close to a Feshbach resonance, where we predict a sharp increase of the effective mass. Already for weaker interactions, before the polaron mass diverges, we predict a transition to a regime where states exist below the polaron energy and the attractive polaron is no longer the ground state. On the repulsive side of the Feshbach resonance we recover the repulsive polaron, which has a finite lifetime because it can decay into low-lying molecular states. We show for the entire range of couplings that the polaron energy has logarithmic corrections in comparison with predictions by the mean-field approach. We demonstrate that they are a consequence of the polaronic mass renormalization which is due to quantum fluctuations of correlated phonons in the polaron cloud.
Loading next page...
 
/lp/aps_physical/strong-coupling-bose-polarons-in-a-bose-einstein-condensate-hpw6mZZDUm
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.013607
Publisher site
See Article on Publisher Site

Abstract

We use a nonperturbative renormalization group approach to develop a unified picture of the Bose polaron problem, where a mobile impurity is strongly interacting with a surrounding Bose-Einstein condensate (BEC). A detailed theoretical analysis of the phase diagram is presented and the polaron-to-molecule transition is discussed. For attractive polarons we argue that a description in terms of an effective Fröhlich Hamiltonian with renormalized parameters is possible. Its strong-coupling regime is realized close to a Feshbach resonance, where we predict a sharp increase of the effective mass. Already for weaker interactions, before the polaron mass diverges, we predict a transition to a regime where states exist below the polaron energy and the attractive polaron is no longer the ground state. On the repulsive side of the Feshbach resonance we recover the repulsive polaron, which has a finite lifetime because it can decay into low-lying molecular states. We show for the entire range of couplings that the polaron energy has logarithmic corrections in comparison with predictions by the mean-field approach. We demonstrate that they are a consequence of the polaronic mass renormalization which is due to quantum fluctuations of correlated phonons in the polaron cloud.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 6, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off