Strong cavity-pseudospin coupling in monolayer transition metal dichalcogenides

Strong cavity-pseudospin coupling in monolayer transition metal dichalcogenides Strong coupling between the electronic states of monolayer transition metal dichalcogenides (TMDCs) such as MoS2,MoSe2,WS2, or WSe2, and a single in-plane optical cavity mode gives rise to valley- and spin-dependent cavity-QED effects. The Dirac Hamiltonian for this two-dimensional gapped semiconductor with large spin-orbit coupling facilitates pure Jaynes-Cummings-type coupling with spin-valley locking—providing an additional handle for spintronics using circularly polarized light. Besides being an on-chip light source, the strong cavity coupling causes the TMDC monolayer to act as a spontaneous spin oscillator. In addition, this system can be a sensitive magnetic field sensor for an in-plane magnetic field. It also displays unusual persistent Rabi oscillations between different conduction-band states that are insensitive to small magnetic field variations. Our analysis for dissipation due to finite exciton relaxation times and cavity losses suggests that these effects are observable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Strong cavity-pseudospin coupling in monolayer transition metal dichalcogenides

Preview Only

Strong cavity-pseudospin coupling in monolayer transition metal dichalcogenides

Abstract

Strong coupling between the electronic states of monolayer transition metal dichalcogenides (TMDCs) such as MoS2,MoSe2,WS2, or WSe2, and a single in-plane optical cavity mode gives rise to valley- and spin-dependent cavity-QED effects. The Dirac Hamiltonian for this two-dimensional gapped semiconductor with large spin-orbit coupling facilitates pure Jaynes-Cummings-type coupling with spin-valley locking—providing an additional handle for spintronics using circularly polarized light. Besides being an on-chip light source, the strong cavity coupling causes the TMDC monolayer to act as a spontaneous spin oscillator. In addition, this system can be a sensitive magnetic field sensor for an in-plane magnetic field. It also displays unusual persistent Rabi oscillations between different conduction-band states that are insensitive to small magnetic field variations. Our analysis for dissipation due to finite exciton relaxation times and cavity losses suggests that these effects are observable.
Loading next page...
 
/lp/aps_physical/strong-cavity-pseudospin-coupling-in-monolayer-transition-metal-cZIiwLmqbR
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.035436
Publisher site
See Article on Publisher Site

Abstract

Strong coupling between the electronic states of monolayer transition metal dichalcogenides (TMDCs) such as MoS2,MoSe2,WS2, or WSe2, and a single in-plane optical cavity mode gives rise to valley- and spin-dependent cavity-QED effects. The Dirac Hamiltonian for this two-dimensional gapped semiconductor with large spin-orbit coupling facilitates pure Jaynes-Cummings-type coupling with spin-valley locking—providing an additional handle for spintronics using circularly polarized light. Besides being an on-chip light source, the strong cavity coupling causes the TMDC monolayer to act as a spontaneous spin oscillator. In addition, this system can be a sensitive magnetic field sensor for an in-plane magnetic field. It also displays unusual persistent Rabi oscillations between different conduction-band states that are insensitive to small magnetic field variations. Our analysis for dissipation due to finite exciton relaxation times and cavity losses suggests that these effects are observable.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 25, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial