Stau coannihilation, compressed spectrum, and SUSY discovery potential at the LHC

Stau coannihilation, compressed spectrum, and SUSY discovery potential at the LHC The lack of observation of supersymmetry thus far implies that the weak supersymmetry scale is larger than what was thought before the LHC era. This observation is strengthened by the Higgs boson mass measurement at ∼125  GeV, which within supersymmetric models implies a large loop correction and a weak supersymmetry scale lying in the several TeV region. In addition if neutralino is the dark matter, its relic density puts further constraints on models often requiring coannihilation to reduce the neutralino relic density to be consistent with experimental observation. The coannihilation in turn implies that the mass gap between the lightest supersymmetric particle and the next to lightest supersymmetric particle will be small, leading to softer final states and making the observation of supersymmetry challenging. In this work we investigate stau coannihilation models within supergravity grand unified models and the potential of discovery of such models at the LHC in the post–Higgs boson discovery era. We utilize a variety of signal regions to optimize the discovery of supersymmetry in the stau coannihilation region. In the analysis presented we impose the relic density constraint as well as the constraint of the Higgs boson mass. The range of sparticle masses discoverable up to the optimal integrated luminosity of the HL-LHC is investigated. It is found that the mass difference between the stau and the neutralino does not exceed ∼20  GeV over the entire mass range of the models explored. Thus the discovery of a supersymmetric signal arising from the stau coannihilation region will also provide a measurement of the neutralino mass. The direct detection of neutralino dark matter is analyzed within the class of stau coannihilation models investigated. The analysis is extended to include multiparticle coannihilation where stau along with chargino and the second neutralino enter into the coannihilation process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Stau coannihilation, compressed spectrum, and SUSY discovery potential at the LHC

Preview Only

Stau coannihilation, compressed spectrum, and SUSY discovery potential at the LHC

Abstract

The lack of observation of supersymmetry thus far implies that the weak supersymmetry scale is larger than what was thought before the LHC era. This observation is strengthened by the Higgs boson mass measurement at ∼125  GeV, which within supersymmetric models implies a large loop correction and a weak supersymmetry scale lying in the several TeV region. In addition if neutralino is the dark matter, its relic density puts further constraints on models often requiring coannihilation to reduce the neutralino relic density to be consistent with experimental observation. The coannihilation in turn implies that the mass gap between the lightest supersymmetric particle and the next to lightest supersymmetric particle will be small, leading to softer final states and making the observation of supersymmetry challenging. In this work we investigate stau coannihilation models within supergravity grand unified models and the potential of discovery of such models at the LHC in the post–Higgs boson discovery era. We utilize a variety of signal regions to optimize the discovery of supersymmetry in the stau coannihilation region. In the analysis presented we impose the relic density constraint as well as the constraint of the Higgs boson mass. The range of sparticle masses discoverable up to the optimal integrated luminosity of the HL-LHC is investigated. It is found that the mass difference between the stau and the neutralino does not exceed ∼20  GeV over the entire mass range of the models explored. Thus the discovery of a supersymmetric signal arising from the stau coannihilation region will also provide a measurement of the neutralino mass. The direct detection of neutralino dark matter is analyzed within the class of stau coannihilation models investigated. The analysis is extended to include multiparticle coannihilation where stau along with chargino and the second neutralino enter into the coannihilation process.
Loading next page...
 
/lp/aps_physical/stau-coannihilation-compressed-spectrum-and-susy-discovery-potential-HXaTyoQRQL
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.95.115030
Publisher site
See Article on Publisher Site

Abstract

The lack of observation of supersymmetry thus far implies that the weak supersymmetry scale is larger than what was thought before the LHC era. This observation is strengthened by the Higgs boson mass measurement at ∼125  GeV, which within supersymmetric models implies a large loop correction and a weak supersymmetry scale lying in the several TeV region. In addition if neutralino is the dark matter, its relic density puts further constraints on models often requiring coannihilation to reduce the neutralino relic density to be consistent with experimental observation. The coannihilation in turn implies that the mass gap between the lightest supersymmetric particle and the next to lightest supersymmetric particle will be small, leading to softer final states and making the observation of supersymmetry challenging. In this work we investigate stau coannihilation models within supergravity grand unified models and the potential of discovery of such models at the LHC in the post–Higgs boson discovery era. We utilize a variety of signal regions to optimize the discovery of supersymmetry in the stau coannihilation region. In the analysis presented we impose the relic density constraint as well as the constraint of the Higgs boson mass. The range of sparticle masses discoverable up to the optimal integrated luminosity of the HL-LHC is investigated. It is found that the mass difference between the stau and the neutralino does not exceed ∼20  GeV over the entire mass range of the models explored. Thus the discovery of a supersymmetric signal arising from the stau coannihilation region will also provide a measurement of the neutralino mass. The direct detection of neutralino dark matter is analyzed within the class of stau coannihilation models investigated. The analysis is extended to include multiparticle coannihilation where stau along with chargino and the second neutralino enter into the coannihilation process.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jun 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off