Statistical mechanics of stochastic growth phenomena

Statistical mechanics of stochastic growth phenomena We develop statistical mechanics for stochastic growth processes and apply it to Laplacian growth by using its remarkable connection with a random matrix theory. The Laplacian growth equation is obtained from the variation principle and describes adiabatic (quasistatic) thermodynamic processes in the two-dimensional Dyson gas. By using Einstein's theory of thermodynamic fluctuations we consider transitional probabilities between thermodynamic states, which are in a one-to-one correspondence with simply connected domains occupied by gas. Transitions between these domains are described by the stochastic Laplacian growth equation, while the transitional probabilities coincide with a free-particle propagator on an infinite-dimensional complex manifold with a Kähler metric. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Statistical mechanics of stochastic growth phenomena

Preview Only

Statistical mechanics of stochastic growth phenomena

Abstract

We develop statistical mechanics for stochastic growth processes and apply it to Laplacian growth by using its remarkable connection with a random matrix theory. The Laplacian growth equation is obtained from the variation principle and describes adiabatic (quasistatic) thermodynamic processes in the two-dimensional Dyson gas. By using Einstein's theory of thermodynamic fluctuations we consider transitional probabilities between thermodynamic states, which are in a one-to-one correspondence with simply connected domains occupied by gas. Transitions between these domains are described by the stochastic Laplacian growth equation, while the transitional probabilities coincide with a free-particle propagator on an infinite-dimensional complex manifold with a Kähler metric.
Loading next page...
 
/lp/aps_physical/statistical-mechanics-of-stochastic-growth-phenomena-D162lFtO1h
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.010103
Publisher site
See Article on Publisher Site

Abstract

We develop statistical mechanics for stochastic growth processes and apply it to Laplacian growth by using its remarkable connection with a random matrix theory. The Laplacian growth equation is obtained from the variation principle and describes adiabatic (quasistatic) thermodynamic processes in the two-dimensional Dyson gas. By using Einstein's theory of thermodynamic fluctuations we consider transitional probabilities between thermodynamic states, which are in a one-to-one correspondence with simply connected domains occupied by gas. Transitions between these domains are described by the stochastic Laplacian growth equation, while the transitional probabilities coincide with a free-particle propagator on an infinite-dimensional complex manifold with a Kähler metric.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 20, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off