Stability of Weyl points in magnetic half-metallic Heusler compounds

Stability of Weyl points in magnetic half-metallic Heusler compounds We employ ab initio fully relativistic electronic structure calculations to study the stability of the Weyl points in the momentum space within the class of the half-metallic ferromagnetic full Heusler materials, by focusing on Co2TiAl as a well-established prototype compound. Here we show that both the number of the Weyl points together with their k-space coordinates can be controlled by the orientation of the magnetization. This alternative degree of freedom, which is absent in other topological materials (e.g., in Weyl semimetals), introduces functionalities that are specific for the class of half-metallic ferromagnets. Of special interest are crossing points which are preserved irrespective of any arbitrary rotation of the magnetization axis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Stability of Weyl points in magnetic half-metallic Heusler compounds

Preview Only

Stability of Weyl points in magnetic half-metallic Heusler compounds

Abstract

We employ ab initio fully relativistic electronic structure calculations to study the stability of the Weyl points in the momentum space within the class of the half-metallic ferromagnetic full Heusler materials, by focusing on Co2TiAl as a well-established prototype compound. Here we show that both the number of the Weyl points together with their k-space coordinates can be controlled by the orientation of the magnetization. This alternative degree of freedom, which is absent in other topological materials (e.g., in Weyl semimetals), introduces functionalities that are specific for the class of half-metallic ferromagnets. Of special interest are crossing points which are preserved irrespective of any arbitrary rotation of the magnetization axis.
Loading next page...
 
/lp/aps_physical/stability-of-weyl-points-in-magnetic-half-metallic-heusler-compounds-z0mv5SFPmQ
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.024435
Publisher site
See Article on Publisher Site

Abstract

We employ ab initio fully relativistic electronic structure calculations to study the stability of the Weyl points in the momentum space within the class of the half-metallic ferromagnetic full Heusler materials, by focusing on Co2TiAl as a well-established prototype compound. Here we show that both the number of the Weyl points together with their k-space coordinates can be controlled by the orientation of the magnetization. This alternative degree of freedom, which is absent in other topological materials (e.g., in Weyl semimetals), introduces functionalities that are specific for the class of half-metallic ferromagnets. Of special interest are crossing points which are preserved irrespective of any arbitrary rotation of the magnetization axis.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 24, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial