Stability of a radially stretching disk beneath a uniformly rotating fluid

Stability of a radially stretching disk beneath a uniformly rotating fluid The steady radial stretching of a disk beneath a rigidly rotating flow with constant angular velocity is considered. The steady base flow is determined numerically for both a stretching and a shrinking disk. The convective instability properties of the flow are examined using temporal stability analysis of the governing Rayleigh equation, and typically for small to moderate radial wave numbers, the range of azimuthal wave numbers β, over which the flow is unstable increases for both a stretched and a shrinking disk, compared to the unstretched case. The inviscid absolute instability properties of the resulting base flows are also examined using spatiotemporal stability analysis. For suitably large stretching rates, the flow is absolutely unstable in only a small range of positive β. For small stretching rates there exists a second region of absolute instability for a range of negative β values. In this region the “effective” two-dimensional base flow, comprised of a linear combination of the radial and azimuthal velocity profiles that enter the Rayleigh equation calculation, has a critical point (unlike for β>0) that can dominate the absolute instability growth rate contribution compared to the shear layer component. A similar behavior is found to occur for a radially shrinking disk, except these profiles have a strong shear layer structure and hence are more unstable than the stretching disk profiles. We thus find for a suitably large shrinking rate the absolute instability contribution from the critical point becomes subdominant to the shear layer contribution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Fluids American Physical Society (APS)

Stability of a radially stretching disk beneath a uniformly rotating fluid

Preview Only

Stability of a radially stretching disk beneath a uniformly rotating fluid

Abstract

The steady radial stretching of a disk beneath a rigidly rotating flow with constant angular velocity is considered. The steady base flow is determined numerically for both a stretching and a shrinking disk. The convective instability properties of the flow are examined using temporal stability analysis of the governing Rayleigh equation, and typically for small to moderate radial wave numbers, the range of azimuthal wave numbers β, over which the flow is unstable increases for both a stretched and a shrinking disk, compared to the unstretched case. The inviscid absolute instability properties of the resulting base flows are also examined using spatiotemporal stability analysis. For suitably large stretching rates, the flow is absolutely unstable in only a small range of positive β. For small stretching rates there exists a second region of absolute instability for a range of negative β values. In this region the “effective” two-dimensional base flow, comprised of a linear combination of the radial and azimuthal velocity profiles that enter the Rayleigh equation calculation, has a critical point (unlike for β>0) that can dominate the absolute instability growth rate contribution compared to the shear layer component. A similar behavior is found to occur for a radially shrinking disk, except these profiles have a strong shear layer structure and hence are more unstable than the stretching disk profiles. We thus find for a suitably large shrinking rate the absolute instability contribution from the critical point becomes subdominant to the shear layer contribution.
Loading next page...
 
/lp/aps_physical/stability-of-a-radially-stretching-disk-beneath-a-uniformly-rotating-Wl5gw09TF1
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
eISSN
2469-990X
D.O.I.
10.1103/PhysRevFluids.2.073904
Publisher site
See Article on Publisher Site

Abstract

The steady radial stretching of a disk beneath a rigidly rotating flow with constant angular velocity is considered. The steady base flow is determined numerically for both a stretching and a shrinking disk. The convective instability properties of the flow are examined using temporal stability analysis of the governing Rayleigh equation, and typically for small to moderate radial wave numbers, the range of azimuthal wave numbers β, over which the flow is unstable increases for both a stretched and a shrinking disk, compared to the unstretched case. The inviscid absolute instability properties of the resulting base flows are also examined using spatiotemporal stability analysis. For suitably large stretching rates, the flow is absolutely unstable in only a small range of positive β. For small stretching rates there exists a second region of absolute instability for a range of negative β values. In this region the “effective” two-dimensional base flow, comprised of a linear combination of the radial and azimuthal velocity profiles that enter the Rayleigh equation calculation, has a critical point (unlike for β>0) that can dominate the absolute instability growth rate contribution compared to the shear layer component. A similar behavior is found to occur for a radially shrinking disk, except these profiles have a strong shear layer structure and hence are more unstable than the stretching disk profiles. We thus find for a suitably large shrinking rate the absolute instability contribution from the critical point becomes subdominant to the shear layer contribution.

Journal

Physical Review FluidsAmerican Physical Society (APS)

Published: Jul 13, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial