Spin-polarized electric current in silicene nanoribbons induced by atomic adsorption

Spin-polarized electric current in silicene nanoribbons induced by atomic adsorption We investigate the nonequilibrium transport properties of a silicene armchair nanoribbon with a random distribution of adsorbed atoms in apex positions. A ferromagnetic insulator grown below the nanoribbon splits spin-up and spin-down electron bands and gives rise to a spin polarization of the conductance. The conductance vanishes when the Fermi energy matches the adatom levels due to the coupling of adatom localized states with the continuum spectra of the nanoribbon. This is the well-known Fano effect, resulting in a spin-dependent antiresonance in the conductance. The different antiresonance energies of spin-up and spin-down electrons give rise to a full spin polarization of the conductance in a broad energy window. This spin-dependent Fano effect opens the possibility to using it in spintronics as a tuneable source of polarized electrons. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Spin-polarized electric current in silicene nanoribbons induced by atomic adsorption

Preview Only

Spin-polarized electric current in silicene nanoribbons induced by atomic adsorption

Abstract

We investigate the nonequilibrium transport properties of a silicene armchair nanoribbon with a random distribution of adsorbed atoms in apex positions. A ferromagnetic insulator grown below the nanoribbon splits spin-up and spin-down electron bands and gives rise to a spin polarization of the conductance. The conductance vanishes when the Fermi energy matches the adatom levels due to the coupling of adatom localized states with the continuum spectra of the nanoribbon. This is the well-known Fano effect, resulting in a spin-dependent antiresonance in the conductance. The different antiresonance energies of spin-up and spin-down electrons give rise to a full spin polarization of the conductance in a broad energy window. This spin-dependent Fano effect opens the possibility to using it in spintronics as a tuneable source of polarized electrons.
Loading next page...
 
/lp/aps_physical/spin-polarized-electric-current-in-silicene-nanoribbons-induced-by-CuWMPIWVnd
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.045403
Publisher site
See Article on Publisher Site

Abstract

We investigate the nonequilibrium transport properties of a silicene armchair nanoribbon with a random distribution of adsorbed atoms in apex positions. A ferromagnetic insulator grown below the nanoribbon splits spin-up and spin-down electron bands and gives rise to a spin polarization of the conductance. The conductance vanishes when the Fermi energy matches the adatom levels due to the coupling of adatom localized states with the continuum spectra of the nanoribbon. This is the well-known Fano effect, resulting in a spin-dependent antiresonance in the conductance. The different antiresonance energies of spin-up and spin-down electrons give rise to a full spin polarization of the conductance in a broad energy window. This spin-dependent Fano effect opens the possibility to using it in spintronics as a tuneable source of polarized electrons.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 6, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off