Spatial design and control of graphene flake motion

Spatial design and control of graphene flake motion The force between a sharp scanning probe tip and a surface can drive a graphene flake over crystalline substrates. The recent design of particular patterns of structural defects on a graphene surface allows us to propose an alternative approach for controlling the motion of a graphene flake over a graphene substrate. The thermally induced motion of a graphene flake is controlled by engineering topological defects in the substrate. Such defect regions lead to an inhomogeneous energy landscape and are energetically unfavorable for the motion of the flake, and will invert and scatter graphene flakes when they are moving toward the defect line. Engineering the distribution of these energy barriers results in a controllable trajectory for the thermal motion of the flake without using any external force. We predict superlubricity of the graphene flake for motion along and between particular defect lines. This Rapid Communication provides insights into the frictional forces of interfaces and opens a route to the engineering of the stochastic motion of a graphene flake over any crystalline substrate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Spatial design and control of graphene flake motion

Preview Only

Spatial design and control of graphene flake motion

Abstract

The force between a sharp scanning probe tip and a surface can drive a graphene flake over crystalline substrates. The recent design of particular patterns of structural defects on a graphene surface allows us to propose an alternative approach for controlling the motion of a graphene flake over a graphene substrate. The thermally induced motion of a graphene flake is controlled by engineering topological defects in the substrate. Such defect regions lead to an inhomogeneous energy landscape and are energetically unfavorable for the motion of the flake, and will invert and scatter graphene flakes when they are moving toward the defect line. Engineering the distribution of these energy barriers results in a controllable trajectory for the thermal motion of the flake without using any external force. We predict superlubricity of the graphene flake for motion along and between particular defect lines. This Rapid Communication provides insights into the frictional forces of interfaces and opens a route to the engineering of the stochastic motion of a graphene flake over any crystalline substrate.
Loading next page...
 
/lp/aps_physical/spatial-design-and-control-of-graphene-flake-motion-Od00FQNq8y
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.060101
Publisher site
See Article on Publisher Site

Abstract

The force between a sharp scanning probe tip and a surface can drive a graphene flake over crystalline substrates. The recent design of particular patterns of structural defects on a graphene surface allows us to propose an alternative approach for controlling the motion of a graphene flake over a graphene substrate. The thermally induced motion of a graphene flake is controlled by engineering topological defects in the substrate. Such defect regions lead to an inhomogeneous energy landscape and are energetically unfavorable for the motion of the flake, and will invert and scatter graphene flakes when they are moving toward the defect line. Engineering the distribution of these energy barriers results in a controllable trajectory for the thermal motion of the flake without using any external force. We predict superlubricity of the graphene flake for motion along and between particular defect lines. This Rapid Communication provides insights into the frictional forces of interfaces and opens a route to the engineering of the stochastic motion of a graphene flake over any crystalline substrate.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 3, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off