Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Solitonic approach to holographic nuclear physics

Solitonic approach to holographic nuclear physics We discuss nuclear physics in the Sakai-Sugimoto model in the limit of a large number Nc of colors and large ’t Hooft coupling λ. In this limit the individual baryons are described by classical solitons whose size is much smaller than the typical distance at which they settle in a nuclear bound state. We can thus use the linear approximation outside the instanton cores to compute the interaction potential. We find the classical geometry of nuclear bound states for baryon number up to 8. One of the interesting features that we find is that holographic nuclear physics provides a natural description for lightly bound states when λ is large. For the case of two nuclei, we also find the topology and metric of the manifold of zero modes and, quantizing it, we find that the ground state can be identified with the deuteron state. We discuss the relations with other methods in the literature used to study Skyrmions and holographic nuclear physics. We discuss 1/Nc and 1/λ corrections and the challenges to overcome to reach the phenomenological values to fit with real QCD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Solitonic approach to holographic nuclear physics

Solitonic approach to holographic nuclear physics

Physical Review D , Volume 96 (3) – Aug 1, 2017

Abstract

We discuss nuclear physics in the Sakai-Sugimoto model in the limit of a large number Nc of colors and large ’t Hooft coupling λ. In this limit the individual baryons are described by classical solitons whose size is much smaller than the typical distance at which they settle in a nuclear bound state. We can thus use the linear approximation outside the instanton cores to compute the interaction potential. We find the classical geometry of nuclear bound states for baryon number up to 8. One of the interesting features that we find is that holographic nuclear physics provides a natural description for lightly bound states when λ is large. For the case of two nuclei, we also find the topology and metric of the manifold of zero modes and, quantizing it, we find that the ground state can be identified with the deuteron state. We discuss the relations with other methods in the literature used to study Skyrmions and holographic nuclear physics. We discuss 1/Nc and 1/λ corrections and the challenges to overcome to reach the phenomenological values to fit with real QCD.

Loading next page...
 
/lp/aps_physical/solitonic-approach-to-holographic-nuclear-physics-ShyDRLXXsb

References (26)

Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
DOI
10.1103/PhysRevD.96.034008
Publisher site
See Article on Publisher Site

Abstract

We discuss nuclear physics in the Sakai-Sugimoto model in the limit of a large number Nc of colors and large ’t Hooft coupling λ. In this limit the individual baryons are described by classical solitons whose size is much smaller than the typical distance at which they settle in a nuclear bound state. We can thus use the linear approximation outside the instanton cores to compute the interaction potential. We find the classical geometry of nuclear bound states for baryon number up to 8. One of the interesting features that we find is that holographic nuclear physics provides a natural description for lightly bound states when λ is large. For the case of two nuclei, we also find the topology and metric of the manifold of zero modes and, quantizing it, we find that the ground state can be identified with the deuteron state. We discuss the relations with other methods in the literature used to study Skyrmions and holographic nuclear physics. We discuss 1/Nc and 1/λ corrections and the challenges to overcome to reach the phenomenological values to fit with real QCD.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Aug 1, 2017

There are no references for this article.