Single-charge-exchange reactions and the neutron density at the surface of the nucleus

Single-charge-exchange reactions and the neutron density at the surface of the nucleus In this paper, we study the charge-exchange reaction to the isobaric analog state using two types of transition densities. One transition density is equal to the difference of the total neutron density minus the total proton density and the other one is the density of the excess neutrons only. We show that for projectiles that do not probe the interior of the nucleus but mostly the surface of this nucleus, distinct differences in the cross section arise when two types of transition densities are employed. We demonstrate this by considering the (He3,t) reaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review C American Physical Society (APS)

Single-charge-exchange reactions and the neutron density at the surface of the nucleus

Preview Only

Single-charge-exchange reactions and the neutron density at the surface of the nucleus

Abstract

In this paper, we study the charge-exchange reaction to the isobaric analog state using two types of transition densities. One transition density is equal to the difference of the total neutron density minus the total proton density and the other one is the density of the excess neutrons only. We show that for projectiles that do not probe the interior of the nucleus but mostly the surface of this nucleus, distinct differences in the cross section arise when two types of transition densities are employed. We demonstrate this by considering the (He3,t) reaction.
Loading next page...
 
/lp/aps_physical/single-charge-exchange-reactions-and-the-neutron-density-at-the-zrnGAHYeIL
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
0556-2813
eISSN
1089-490X
D.O.I.
10.1103/PhysRevC.96.014311
Publisher site
See Article on Publisher Site

Abstract

In this paper, we study the charge-exchange reaction to the isobaric analog state using two types of transition densities. One transition density is equal to the difference of the total neutron density minus the total proton density and the other one is the density of the excess neutrons only. We show that for projectiles that do not probe the interior of the nucleus but mostly the surface of this nucleus, distinct differences in the cross section arise when two types of transition densities are employed. We demonstrate this by considering the (He3,t) reaction.

Journal

Physical Review CAmerican Physical Society (APS)

Published: Jul 17, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial