Shortcuts to isothermality and nonequilibrium work relations

Shortcuts to isothermality and nonequilibrium work relations In conventional thermodynamics, it is widely acknowledged that the realization of an isothermal process for a system requires a quasistatic controlling protocol. Here we propose and design a strategy to realize a finite-rate isothermal transition from an equilibrium state to another one at the same temperature, which is named the “shortcut to isothermality.” By using shortcuts to isothermality, we derive three nonequilibrium work relations, including an identity between the free-energy difference and the mean work due to the potential of the original system, a Jarzynski-like equality, and the inverse relationship between the dissipated work and the total driving time. We numerically test these three relations by considering the motion of a Brownian particle trapped in a harmonic potential and dragged by a time-dependent force. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Shortcuts to isothermality and nonequilibrium work relations

Preview Only

Shortcuts to isothermality and nonequilibrium work relations

Abstract

In conventional thermodynamics, it is widely acknowledged that the realization of an isothermal process for a system requires a quasistatic controlling protocol. Here we propose and design a strategy to realize a finite-rate isothermal transition from an equilibrium state to another one at the same temperature, which is named the “shortcut to isothermality.” By using shortcuts to isothermality, we derive three nonequilibrium work relations, including an identity between the free-energy difference and the mean work due to the potential of the original system, a Jarzynski-like equality, and the inverse relationship between the dissipated work and the total driving time. We numerically test these three relations by considering the motion of a Brownian particle trapped in a harmonic potential and dragged by a time-dependent force.
Loading next page...
 
/lp/aps_physical/shortcuts-to-isothermality-and-nonequilibrium-work-relations-0zbH0pZF74
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012144
Publisher site
See Article on Publisher Site

Abstract

In conventional thermodynamics, it is widely acknowledged that the realization of an isothermal process for a system requires a quasistatic controlling protocol. Here we propose and design a strategy to realize a finite-rate isothermal transition from an equilibrium state to another one at the same temperature, which is named the “shortcut to isothermality.” By using shortcuts to isothermality, we derive three nonequilibrium work relations, including an identity between the free-energy difference and the mean work due to the potential of the original system, a Jarzynski-like equality, and the inverse relationship between the dissipated work and the total driving time. We numerically test these three relations by considering the motion of a Brownian particle trapped in a harmonic potential and dragged by a time-dependent force.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 24, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off