Shear-rate-dependent transport coefficients in granular suspensions

Shear-rate-dependent transport coefficients in granular suspensions A recent model for monodisperse granular suspensions is used to analyze transport properties in spatially inhomogeneous states close to the simple (or uniform) shear flow. The kinetic equation is based on the inelastic Boltzmann (for low-density gases) with the presence of a viscous drag force that models the influence of the interstitial gas phase on the dynamics of grains. A normal solution is obtained via a Chapman-Enskog-like expansion around a (local) shear flow distribution which retains all the hydrodynamic orders in the shear rate. To first order in the expansion, the transport coefficients characterizing momentum and heat transport around shear flow are given in terms of the solutions of a set of coupled linear integral equations which are approximately solved by using a kinetic model of the Boltzmann equation. To simplify the analysis, the steady-state conditions when viscous heating is compensated by the cooling terms arising from viscous friction and collisional dissipation are considered to get the explicit forms of the set of generalized transport coefficients. The shear-rate dependence of some of the transport coefficients of the set is illustrated for several values of the coefficient of restitution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Shear-rate-dependent transport coefficients in granular suspensions

Preview Only

Shear-rate-dependent transport coefficients in granular suspensions

Abstract

A recent model for monodisperse granular suspensions is used to analyze transport properties in spatially inhomogeneous states close to the simple (or uniform) shear flow. The kinetic equation is based on the inelastic Boltzmann (for low-density gases) with the presence of a viscous drag force that models the influence of the interstitial gas phase on the dynamics of grains. A normal solution is obtained via a Chapman-Enskog-like expansion around a (local) shear flow distribution which retains all the hydrodynamic orders in the shear rate. To first order in the expansion, the transport coefficients characterizing momentum and heat transport around shear flow are given in terms of the solutions of a set of coupled linear integral equations which are approximately solved by using a kinetic model of the Boltzmann equation. To simplify the analysis, the steady-state conditions when viscous heating is compensated by the cooling terms arising from viscous friction and collisional dissipation are considered to get the explicit forms of the set of generalized transport coefficients. The shear-rate dependence of some of the transport coefficients of the set is illustrated for several values of the coefficient of restitution.
Loading next page...
 
/lp/aps_physical/shear-rate-dependent-transport-coefficients-in-granular-suspensions-y6UA0JYHLd
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.95.062906
Publisher site
See Article on Publisher Site

Abstract

A recent model for monodisperse granular suspensions is used to analyze transport properties in spatially inhomogeneous states close to the simple (or uniform) shear flow. The kinetic equation is based on the inelastic Boltzmann (for low-density gases) with the presence of a viscous drag force that models the influence of the interstitial gas phase on the dynamics of grains. A normal solution is obtained via a Chapman-Enskog-like expansion around a (local) shear flow distribution which retains all the hydrodynamic orders in the shear rate. To first order in the expansion, the transport coefficients characterizing momentum and heat transport around shear flow are given in terms of the solutions of a set of coupled linear integral equations which are approximately solved by using a kinetic model of the Boltzmann equation. To simplify the analysis, the steady-state conditions when viscous heating is compensated by the cooling terms arising from viscous friction and collisional dissipation are considered to get the explicit forms of the set of generalized transport coefficients. The shear-rate dependence of some of the transport coefficients of the set is illustrated for several values of the coefficient of restitution.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jun 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off