Sharpening the shape analysis for higher-dimensional operator searches

Sharpening the shape analysis for higher-dimensional operator searches When the Standard Model is interpreted as the renormalizable sector of a low-energy effective theory, the effects of new physics are encoded into a set of higher-dimensional operators. These operators potentially deform the shapes of Standard Model differential distributions of final states observable at colliders. We describe a simple and systematic method to obtain optimal estimations of these deformations when using numerical tools, like Monte Carlo simulations. A crucial aspect of this method is minimization of the estimation uncertainty: We demonstrate how the operator coefficients have to be set in the simulations in order to get optimal results. The uncertainty on the interference term turns out to be the most difficult to control and grows very quickly when the interference is suppressed. We exemplify our method by computing the deformations induced by the O3W operator in W+W- production at the LHC, and by deriving a bound on O3W using 8 TeV CMS data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Sharpening the shape analysis for higher-dimensional operator searches

Preview Only

Sharpening the shape analysis for higher-dimensional operator searches

Abstract

When the Standard Model is interpreted as the renormalizable sector of a low-energy effective theory, the effects of new physics are encoded into a set of higher-dimensional operators. These operators potentially deform the shapes of Standard Model differential distributions of final states observable at colliders. We describe a simple and systematic method to obtain optimal estimations of these deformations when using numerical tools, like Monte Carlo simulations. A crucial aspect of this method is minimization of the estimation uncertainty: We demonstrate how the operator coefficients have to be set in the simulations in order to get optimal results. The uncertainty on the interference term turns out to be the most difficult to control and grows very quickly when the interference is suppressed. We exemplify our method by computing the deformations induced by the O3W operator in W+W- production at the LHC, and by deriving a bound on O3W using 8 TeV CMS data.
Loading next page...
 
/lp/aps_physical/sharpening-the-shape-analysis-for-higher-dimensional-operator-searches-Exrckd3LsD
Publisher
The American Physical Society
Copyright
Copyright © Published by the American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.036003
Publisher site
See Article on Publisher Site

Abstract

When the Standard Model is interpreted as the renormalizable sector of a low-energy effective theory, the effects of new physics are encoded into a set of higher-dimensional operators. These operators potentially deform the shapes of Standard Model differential distributions of final states observable at colliders. We describe a simple and systematic method to obtain optimal estimations of these deformations when using numerical tools, like Monte Carlo simulations. A crucial aspect of this method is minimization of the estimation uncertainty: We demonstrate how the operator coefficients have to be set in the simulations in order to get optimal results. The uncertainty on the interference term turns out to be the most difficult to control and grows very quickly when the interference is suppressed. We exemplify our method by computing the deformations induced by the O3W operator in W+W- production at the LHC, and by deriving a bound on O3W using 8 TeV CMS data.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Aug 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial