Second-order structural phase transitions, free energy curvature, and temperature-dependent anharmonic phonons in the self-consistent harmonic approximation: Theory and stochastic implementation

Second-order structural phase transitions, free energy curvature, and temperature-dependent... The self-consistent harmonic approximation is an effective harmonic theory to calculate the free energy of systems with strongly anharmonic atomic vibrations, and its stochastic implementation has proved to be an efficient method to study, from first-principles, the anharmonic properties of solids. The free energy as a function of average atomic positions (centroids) can be used to study quantum or thermal lattice instability. In particular the centroids are order parameters in second-order structural phase transitions such as, e.g., charge-density-waves or ferroelectric instabilities. According to Landau's theory, the knowledge of the second derivative of the free energy (i.e., the curvature) with respect to the centroids in a high-symmetry configuration allows the identification of the phase-transition and of the instability modes. In this work we derive the exact analytic formula for the second derivative of the free energy in the self-consistent harmonic approximation for a generic atomic configuration. The analytic derivative is expressed in terms of the atomic displacements and forces in a form that can be evaluated by a stochastic technique using importance sampling. Our approach is particularly suitable for applications based on first-principles density-functional-theory calculations, where the forces on atoms can be obtained with a negligible computational effort compared to total energy determination. Finally, we propose a dynamical extension of the theory to calculate spectral properties of strongly anharmonic phonons, as probed by inelastic scattering processes. We illustrate our method with a numerical application on a toy model that mimics the ferroelectric transition in rock-salt crystals such as SnTe or GeTe. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Second-order structural phase transitions, free energy curvature, and temperature-dependent anharmonic phonons in the self-consistent harmonic approximation: Theory and stochastic implementation

Preview Only

Second-order structural phase transitions, free energy curvature, and temperature-dependent anharmonic phonons in the self-consistent harmonic approximation: Theory and stochastic implementation

Abstract

The self-consistent harmonic approximation is an effective harmonic theory to calculate the free energy of systems with strongly anharmonic atomic vibrations, and its stochastic implementation has proved to be an efficient method to study, from first-principles, the anharmonic properties of solids. The free energy as a function of average atomic positions (centroids) can be used to study quantum or thermal lattice instability. In particular the centroids are order parameters in second-order structural phase transitions such as, e.g., charge-density-waves or ferroelectric instabilities. According to Landau's theory, the knowledge of the second derivative of the free energy (i.e., the curvature) with respect to the centroids in a high-symmetry configuration allows the identification of the phase-transition and of the instability modes. In this work we derive the exact analytic formula for the second derivative of the free energy in the self-consistent harmonic approximation for a generic atomic configuration. The analytic derivative is expressed in terms of the atomic displacements and forces in a form that can be evaluated by a stochastic technique using importance sampling. Our approach is particularly suitable for applications based on first-principles density-functional-theory calculations, where the forces on atoms can be obtained with a negligible computational effort compared to total energy determination. Finally, we propose a dynamical extension of the theory to calculate spectral properties of strongly anharmonic phonons, as probed by inelastic scattering processes. We illustrate our method with a numerical application on a toy model that mimics the ferroelectric transition in rock-salt crystals such as SnTe or GeTe.
Loading next page...
 
/lp/aps_physical/second-order-structural-phase-transitions-free-energy-curvature-and-rwD0MLdJ5m
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.014111
Publisher site
See Article on Publisher Site

Abstract

The self-consistent harmonic approximation is an effective harmonic theory to calculate the free energy of systems with strongly anharmonic atomic vibrations, and its stochastic implementation has proved to be an efficient method to study, from first-principles, the anharmonic properties of solids. The free energy as a function of average atomic positions (centroids) can be used to study quantum or thermal lattice instability. In particular the centroids are order parameters in second-order structural phase transitions such as, e.g., charge-density-waves or ferroelectric instabilities. According to Landau's theory, the knowledge of the second derivative of the free energy (i.e., the curvature) with respect to the centroids in a high-symmetry configuration allows the identification of the phase-transition and of the instability modes. In this work we derive the exact analytic formula for the second derivative of the free energy in the self-consistent harmonic approximation for a generic atomic configuration. The analytic derivative is expressed in terms of the atomic displacements and forces in a form that can be evaluated by a stochastic technique using importance sampling. Our approach is particularly suitable for applications based on first-principles density-functional-theory calculations, where the forces on atoms can be obtained with a negligible computational effort compared to total energy determination. Finally, we propose a dynamical extension of the theory to calculate spectral properties of strongly anharmonic phonons, as probed by inelastic scattering processes. We illustrate our method with a numerical application on a toy model that mimics the ferroelectric transition in rock-salt crystals such as SnTe or GeTe.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 18, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off