Second-harmonic generation in noncentrosymmetric phosphates

Second-harmonic generation in noncentrosymmetric phosphates Motivated by the discovery of more and more phosphates with relatively strong nonlinear optic effect, we studied the mechanism of the second-harmonic generation (SHG) effect in several phosphates by band model and first-principles calculations. When the energy of an incident photon is much smaller than the band gap of material, the SHG is almost frequency independent and determined by the combination of Berry connection and a symmetric tensor. The SHG effect in phosphates can be enhanced by the enhancement of orbital hybridization or the reduction of charge-transfer energy, which results in widened bandwidth of occupied state and reduced band gap in the electronic structure, respectively. By the first-principles calculation on the electronic structures of several phosphates—BPO4, LiCs2PO4, β-Li3VO4, and β-Li3PO4—we interpreted the relatively strong SHG effect in LiCs2PO4 and β-Li3VO4 as the consequence of the reduced charge-transfer energy compared to their parent β-Li3PO4, while the enhanced SHG in BPO4 is resulting from enhanced orbital hybridization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Second-harmonic generation in noncentrosymmetric phosphates

Preview Only

Second-harmonic generation in noncentrosymmetric phosphates

Abstract

Motivated by the discovery of more and more phosphates with relatively strong nonlinear optic effect, we studied the mechanism of the second-harmonic generation (SHG) effect in several phosphates by band model and first-principles calculations. When the energy of an incident photon is much smaller than the band gap of material, the SHG is almost frequency independent and determined by the combination of Berry connection and a symmetric tensor. The SHG effect in phosphates can be enhanced by the enhancement of orbital hybridization or the reduction of charge-transfer energy, which results in widened bandwidth of occupied state and reduced band gap in the electronic structure, respectively. By the first-principles calculation on the electronic structures of several phosphates—BPO4, LiCs2PO4, β-Li3VO4, and β-Li3PO4—we interpreted the relatively strong SHG effect in LiCs2PO4 and β-Li3VO4 as the consequence of the reduced charge-transfer energy compared to their parent β-Li3PO4, while the enhanced SHG in BPO4 is resulting from enhanced orbital hybridization.
Loading next page...
 
/lp/aps_physical/second-harmonic-generation-in-noncentrosymmetric-phosphates-V9Bxcxog93
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.035205
Publisher site
See Article on Publisher Site

Abstract

Motivated by the discovery of more and more phosphates with relatively strong nonlinear optic effect, we studied the mechanism of the second-harmonic generation (SHG) effect in several phosphates by band model and first-principles calculations. When the energy of an incident photon is much smaller than the band gap of material, the SHG is almost frequency independent and determined by the combination of Berry connection and a symmetric tensor. The SHG effect in phosphates can be enhanced by the enhancement of orbital hybridization or the reduction of charge-transfer energy, which results in widened bandwidth of occupied state and reduced band gap in the electronic structure, respectively. By the first-principles calculation on the electronic structures of several phosphates—BPO4, LiCs2PO4, β-Li3VO4, and β-Li3PO4—we interpreted the relatively strong SHG effect in LiCs2PO4 and β-Li3VO4 as the consequence of the reduced charge-transfer energy compared to their parent β-Li3PO4, while the enhanced SHG in BPO4 is resulting from enhanced orbital hybridization.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 24, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial