Second-harmonic generation in longitudinal epsilon-near-zero materials

Second-harmonic generation in longitudinal epsilon-near-zero materials We investigate second-harmonic generation from anisotropic or longitudinal epsilon-near-zero materials. We find conversion efficiencies well above their isotropic counterparts owing to additional field intensity enhancement provided by the anisotropy. At the same time, anisotropic epsilon-near-zero materials are also less sensitive to the material's losses compared to the isotropic ones. In turn, these improvements become pivotal for epsilon-near-zero materials that do not possess bulk dipole-allowed quadratic nonlinearities. We predict that second-harmonic generation from a Dy:CdO/Si multilayer with longitudinal epsilon-near-zero properties can exceed the conversion efficiency of a homogeneous Dy:CdO slab of equivalent thickness by at least 20 times for almost any angle of incidence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Second-harmonic generation in longitudinal epsilon-near-zero materials

Preview Only

Second-harmonic generation in longitudinal epsilon-near-zero materials

Abstract

We investigate second-harmonic generation from anisotropic or longitudinal epsilon-near-zero materials. We find conversion efficiencies well above their isotropic counterparts owing to additional field intensity enhancement provided by the anisotropy. At the same time, anisotropic epsilon-near-zero materials are also less sensitive to the material's losses compared to the isotropic ones. In turn, these improvements become pivotal for epsilon-near-zero materials that do not possess bulk dipole-allowed quadratic nonlinearities. We predict that second-harmonic generation from a Dy:CdO/Si multilayer with longitudinal epsilon-near-zero properties can exceed the conversion efficiency of a homogeneous Dy:CdO slab of equivalent thickness by at least 20 times for almost any angle of incidence.
Loading next page...
 
/lp/aps_physical/second-harmonic-generation-in-longitudinal-epsilon-near-zero-materials-fg07RQvd1B
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.045438
Publisher site
See Article on Publisher Site

Abstract

We investigate second-harmonic generation from anisotropic or longitudinal epsilon-near-zero materials. We find conversion efficiencies well above their isotropic counterparts owing to additional field intensity enhancement provided by the anisotropy. At the same time, anisotropic epsilon-near-zero materials are also less sensitive to the material's losses compared to the isotropic ones. In turn, these improvements become pivotal for epsilon-near-zero materials that do not possess bulk dipole-allowed quadratic nonlinearities. We predict that second-harmonic generation from a Dy:CdO/Si multilayer with longitudinal epsilon-near-zero properties can exceed the conversion efficiency of a homogeneous Dy:CdO slab of equivalent thickness by at least 20 times for almost any angle of incidence.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 31, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial