Scaling from gauge and scalar radiation in Abelian-Higgs string networks

Scaling from gauge and scalar radiation in Abelian-Higgs string networks We investigate cosmic string networks in the Abelian Higgs model using data from a campaign of large-scale numerical simulations on lattices of up to 40963 grid points. We observe scaling or self-similarity of the networks over a wide range of scales and estimate the asymptotic values of the mean string separation in horizon length units ξ˙ and of the mean square string velocity v¯2 in the continuum and large time limits. The scaling occurs because the strings lose energy into classical radiation of the scalar and gauge fields of the Abelian Higgs model. We quantify the energy loss with a dimensionless radiative efficiency parameter and show that it does not vary significantly with lattice spacing or string separation. This implies that the radiative energy loss underlying the scaling behavior is not a lattice artifact, and justifies the extrapolation of measured network properties to large times for computations of cosmological perturbations. We also show that the core growth method, which increases the defect core width with time to extend the dynamic range of simulations, does not introduce significant systematic error. We compare ξ˙ and v¯2 to values measured in simulations using the Nambu-Goto approximation, finding that the latter underestimate the mean string separation by about 25%, and overestimate v¯2 by about 10%. The scaling of the string separation implies that string loops decay by the emission of massive radiation within a Hubble time in field theory simulations, in contrast to the Nambu-Goto scenario which neglects this energy loss mechanism. String loops surviving for only one Hubble time emit much less gravitational radiation than in the Nambu-Goto scenario and are consequently subject to much weaker gravitational wave constraints on their tension. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Scaling from gauge and scalar radiation in Abelian-Higgs string networks

Preview Only

Scaling from gauge and scalar radiation in Abelian-Higgs string networks

Abstract

We investigate cosmic string networks in the Abelian Higgs model using data from a campaign of large-scale numerical simulations on lattices of up to 40963 grid points. We observe scaling or self-similarity of the networks over a wide range of scales and estimate the asymptotic values of the mean string separation in horizon length units ξ˙ and of the mean square string velocity v¯2 in the continuum and large time limits. The scaling occurs because the strings lose energy into classical radiation of the scalar and gauge fields of the Abelian Higgs model. We quantify the energy loss with a dimensionless radiative efficiency parameter and show that it does not vary significantly with lattice spacing or string separation. This implies that the radiative energy loss underlying the scaling behavior is not a lattice artifact, and justifies the extrapolation of measured network properties to large times for computations of cosmological perturbations. We also show that the core growth method, which increases the defect core width with time to extend the dynamic range of simulations, does not introduce significant systematic error. We compare ξ˙ and v¯2 to values measured in simulations using the Nambu-Goto approximation, finding that the latter underestimate the mean string separation by about 25%, and overestimate v¯2 by about 10%. The scaling of the string separation implies that string loops decay by the emission of massive radiation within a Hubble time in field theory simulations, in contrast to the Nambu-Goto scenario which neglects this energy loss mechanism. String loops surviving for only one Hubble time emit much less gravitational radiation than in the Nambu-Goto scenario and are consequently subject to much weaker gravitational wave constraints on their tension.
Loading next page...
 
/lp/aps_physical/scaling-from-gauge-and-scalar-radiation-in-abelian-higgs-string-M652XOx4L5
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.023525
Publisher site
See Article on Publisher Site

Abstract

We investigate cosmic string networks in the Abelian Higgs model using data from a campaign of large-scale numerical simulations on lattices of up to 40963 grid points. We observe scaling or self-similarity of the networks over a wide range of scales and estimate the asymptotic values of the mean string separation in horizon length units ξ˙ and of the mean square string velocity v¯2 in the continuum and large time limits. The scaling occurs because the strings lose energy into classical radiation of the scalar and gauge fields of the Abelian Higgs model. We quantify the energy loss with a dimensionless radiative efficiency parameter and show that it does not vary significantly with lattice spacing or string separation. This implies that the radiative energy loss underlying the scaling behavior is not a lattice artifact, and justifies the extrapolation of measured network properties to large times for computations of cosmological perturbations. We also show that the core growth method, which increases the defect core width with time to extend the dynamic range of simulations, does not introduce significant systematic error. We compare ξ˙ and v¯2 to values measured in simulations using the Nambu-Goto approximation, finding that the latter underestimate the mean string separation by about 25%, and overestimate v¯2 by about 10%. The scaling of the string separation implies that string loops decay by the emission of massive radiation within a Hubble time in field theory simulations, in contrast to the Nambu-Goto scenario which neglects this energy loss mechanism. String loops surviving for only one Hubble time emit much less gravitational radiation than in the Nambu-Goto scenario and are consequently subject to much weaker gravitational wave constraints on their tension.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial