Room-temperature half-metallicity in monolayer honeycomb structures of group-V binary compounds with carrier doping

Room-temperature half-metallicity in monolayer honeycomb structures of group-V binary compounds... Two-dimensional (2D) half-metallic materials are essential to develop next-generation spintronic devices. Moreover, electrical controllability and room-temperature magnetism are two important ingredients for applications in spintronics. Here, we report findings of a combination of these properties in 2D honeycomb structures of group-V NX (X=N, P, As, Sb, Bi) binary compounds from first-principles calculations. These novel 2D materials are stable semiconductors with indirect band gaps. Hole doping can induce magnetism due to their Mexican-hat band edges and make them half-metals. Some of these half-metals exhibit inverse spin-polarization direction when changing the doping level, which can be achieved by changing the external voltage gate. Monte Carlo simulations based on the Ising model suggest the Curie temperatures of these half-metals are much higher than room temperature. These outstanding properties make monolayer NX promising candidates for spintronic applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Room-temperature half-metallicity in monolayer honeycomb structures of group-V binary compounds with carrier doping

Preview Only

Room-temperature half-metallicity in monolayer honeycomb structures of group-V binary compounds with carrier doping

Abstract

Two-dimensional (2D) half-metallic materials are essential to develop next-generation spintronic devices. Moreover, electrical controllability and room-temperature magnetism are two important ingredients for applications in spintronics. Here, we report findings of a combination of these properties in 2D honeycomb structures of group-V NX (X=N, P, As, Sb, Bi) binary compounds from first-principles calculations. These novel 2D materials are stable semiconductors with indirect band gaps. Hole doping can induce magnetism due to their Mexican-hat band edges and make them half-metals. Some of these half-metals exhibit inverse spin-polarization direction when changing the doping level, which can be achieved by changing the external voltage gate. Monte Carlo simulations based on the Ising model suggest the Curie temperatures of these half-metals are much higher than room temperature. These outstanding properties make monolayer NX promising candidates for spintronic applications.
Loading next page...
 
/lp/aps_physical/room-temperature-half-metallicity-in-monolayer-honeycomb-structures-of-Ft69Zs40D0
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.075401
Publisher site
See Article on Publisher Site

Abstract

Two-dimensional (2D) half-metallic materials are essential to develop next-generation spintronic devices. Moreover, electrical controllability and room-temperature magnetism are two important ingredients for applications in spintronics. Here, we report findings of a combination of these properties in 2D honeycomb structures of group-V NX (X=N, P, As, Sb, Bi) binary compounds from first-principles calculations. These novel 2D materials are stable semiconductors with indirect band gaps. Hole doping can induce magnetism due to their Mexican-hat band edges and make them half-metals. Some of these half-metals exhibit inverse spin-polarization direction when changing the doping level, which can be achieved by changing the external voltage gate. Monte Carlo simulations based on the Ising model suggest the Curie temperatures of these half-metals are much higher than room temperature. These outstanding properties make monolayer NX promising candidates for spintronic applications.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off