Role of the A-site cation in determining the properties of the hybrid perovskite CH3NH3PbBr3

Role of the A-site cation in determining the properties of the hybrid perovskite CH3NH3PbBr3 The presence of a molecule at the A site of an organic perovskite leads to unusual behavior compared to its inorganic counterpart. Considering the case of CH3NH3, we find that it is both the size of the molecule as well as its orientation in the cage formed by the Pb and Br atoms which determine the favored structure. At the microscopic level, the basic energetics which come into play are steric effects as well as hydrogen bonding. While the molecule is asymmetrically placed in the cuboctahedral cavity, a mapping of the ab initio band structure to a tight-binding model reveals that the movement of the amine end of the molecule towards the Br atoms is driven primarily by electrostatic considerations. While the hydrogen bonding is responsible for driving the octahedral tilts, the energy lowering considerations do not follow a simple prescription of minimizing H-Br bond lengths. The presence of several competing energetics results in a complex low-energy landscape with deep valleys and high barriers between them which could explain the glassy dynamics seen even at low temperatures in the orthorhombic structure where the dipoles are believed to be frozen. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Role of the A-site cation in determining the properties of the hybrid perovskite CH3NH3PbBr3

Preview Only

Role of the A-site cation in determining the properties of the hybrid perovskite CH3NH3PbBr3

Abstract

The presence of a molecule at the A site of an organic perovskite leads to unusual behavior compared to its inorganic counterpart. Considering the case of CH3NH3, we find that it is both the size of the molecule as well as its orientation in the cage formed by the Pb and Br atoms which determine the favored structure. At the microscopic level, the basic energetics which come into play are steric effects as well as hydrogen bonding. While the molecule is asymmetrically placed in the cuboctahedral cavity, a mapping of the ab initio band structure to a tight-binding model reveals that the movement of the amine end of the molecule towards the Br atoms is driven primarily by electrostatic considerations. While the hydrogen bonding is responsible for driving the octahedral tilts, the energy lowering considerations do not follow a simple prescription of minimizing H-Br bond lengths. The presence of several competing energetics results in a complex low-energy landscape with deep valleys and high barriers between them which could explain the glassy dynamics seen even at low temperatures in the orthorhombic structure where the dipoles are believed to be frozen.
Loading next page...
 
/lp/aps_physical/role-of-the-a-site-cation-in-determining-the-properties-of-the-hybrid-NdHyU8fFuy
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.95.214118
Publisher site
See Article on Publisher Site

Abstract

The presence of a molecule at the A site of an organic perovskite leads to unusual behavior compared to its inorganic counterpart. Considering the case of CH3NH3, we find that it is both the size of the molecule as well as its orientation in the cage formed by the Pb and Br atoms which determine the favored structure. At the microscopic level, the basic energetics which come into play are steric effects as well as hydrogen bonding. While the molecule is asymmetrically placed in the cuboctahedral cavity, a mapping of the ab initio band structure to a tight-binding model reveals that the movement of the amine end of the molecule towards the Br atoms is driven primarily by electrostatic considerations. While the hydrogen bonding is responsible for driving the octahedral tilts, the energy lowering considerations do not follow a simple prescription of minimizing H-Br bond lengths. The presence of several competing energetics results in a complex low-energy landscape with deep valleys and high barriers between them which could explain the glassy dynamics seen even at low temperatures in the orthorhombic structure where the dipoles are believed to be frozen.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jun 29, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial