Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Role of fivefold symmetry in the dynamical slowing down of metallic glass-forming liquids

Role of fivefold symmetry in the dynamical slowing down of metallic glass-forming liquids Fivefold symmetry is supposed to have an important role in suppressing crystallization and promoting glass transition due to its structural incompatibility with crystal. In this paper, we study the correlation between the fivefold symmetry and the dynamical slowing down in glass-forming Cu-Zr liquids using the single-particle dynamics method based on molecular dynamics simulations. The dynamics of the glass-forming liquids is microscopically characterized by the jump cage motion for individual atoms; moreover, the cooperative jumps become more pronounced upon approaching the glass transition temperature. We find that the role of fivefold symmetry in the dynamical slowing down does not lie in caging atomic motion but, more importantly, in suppressing cooperative jumps. The atoms with a high degree of fivefold symmetry and involved in jump motions appear more sluggish compared to other jumps. This behavior significantly suppresses the cooperative jumps around them, leading to the slowing down of fast dynamics. The degree of suppression has a close relation to the glass-forming ability and contributes to the “strong” character of liquids. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Role of fivefold symmetry in the dynamical slowing down of metallic glass-forming liquids

Physical Review B , Volume 96 (6) – Aug 1, 2017

Role of fivefold symmetry in the dynamical slowing down of metallic glass-forming liquids

Physical Review B , Volume 96 (6) – Aug 1, 2017

Abstract

Fivefold symmetry is supposed to have an important role in suppressing crystallization and promoting glass transition due to its structural incompatibility with crystal. In this paper, we study the correlation between the fivefold symmetry and the dynamical slowing down in glass-forming Cu-Zr liquids using the single-particle dynamics method based on molecular dynamics simulations. The dynamics of the glass-forming liquids is microscopically characterized by the jump cage motion for individual atoms; moreover, the cooperative jumps become more pronounced upon approaching the glass transition temperature. We find that the role of fivefold symmetry in the dynamical slowing down does not lie in caging atomic motion but, more importantly, in suppressing cooperative jumps. The atoms with a high degree of fivefold symmetry and involved in jump motions appear more sluggish compared to other jumps. This behavior significantly suppresses the cooperative jumps around them, leading to the slowing down of fast dynamics. The degree of suppression has a close relation to the glass-forming ability and contributes to the “strong” character of liquids.

Loading next page...
 
/lp/aps_physical/role-of-fivefold-symmetry-in-the-dynamical-slowing-down-of-metallic-baYlaChrKl

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
DOI
10.1103/PhysRevB.96.064301
Publisher site
See Article on Publisher Site

Abstract

Fivefold symmetry is supposed to have an important role in suppressing crystallization and promoting glass transition due to its structural incompatibility with crystal. In this paper, we study the correlation between the fivefold symmetry and the dynamical slowing down in glass-forming Cu-Zr liquids using the single-particle dynamics method based on molecular dynamics simulations. The dynamics of the glass-forming liquids is microscopically characterized by the jump cage motion for individual atoms; moreover, the cooperative jumps become more pronounced upon approaching the glass transition temperature. We find that the role of fivefold symmetry in the dynamical slowing down does not lie in caging atomic motion but, more importantly, in suppressing cooperative jumps. The atoms with a high degree of fivefold symmetry and involved in jump motions appear more sluggish compared to other jumps. This behavior significantly suppresses the cooperative jumps around them, leading to the slowing down of fast dynamics. The degree of suppression has a close relation to the glass-forming ability and contributes to the “strong” character of liquids.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 1, 2017

There are no references for this article.