Role of 4f electrons in crystallographic and magnetic complexity

Role of 4f electrons in crystallographic and magnetic complexity The functionality of many magnetic materials critically depends on first manipulating and then taking advantage of highly nonlinear changes of properties that occur during phase transformations. Unique to lanthanides, property-defining 4f electrons are highly localized and, as commonly accepted, play little to no role in chemical bonding. Yet here we demonstrate that the competition between 4f-electron energy landscapes of Dy (4f9) and Er (4f11) is the key element of the puzzle required to explain complex interplay of magnetic and structural features observed in Er1−xDyxCo2, and likely many other mixed lanthanide systems. Unlike the parent binaries—DyCo2 and ErCo2—Er1−xDyxCo2 exhibits two successive magnetostructural transitions: a first order at TC, followed by a second order in the ferrimagnetically ordered state. Supported by first-principles calculations, our results offer new opportunities for targeted design of magnetic materials with multiple functionalities, and also provide a critical insight into the role of 4f electrons in controlling the magnetism and structure of lanthanide intermetallics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Role of 4f electrons in crystallographic and magnetic complexity

Preview Only

Role of 4f electrons in crystallographic and magnetic complexity

Abstract

The functionality of many magnetic materials critically depends on first manipulating and then taking advantage of highly nonlinear changes of properties that occur during phase transformations. Unique to lanthanides, property-defining 4f electrons are highly localized and, as commonly accepted, play little to no role in chemical bonding. Yet here we demonstrate that the competition between 4f-electron energy landscapes of Dy (4f9) and Er (4f11) is the key element of the puzzle required to explain complex interplay of magnetic and structural features observed in Er1−xDyxCo2, and likely many other mixed lanthanide systems. Unlike the parent binaries—DyCo2 and ErCo2—Er1−xDyxCo2 exhibits two successive magnetostructural transitions: a first order at TC, followed by a second order in the ferrimagnetically ordered state. Supported by first-principles calculations, our results offer new opportunities for targeted design of magnetic materials with multiple functionalities, and also provide a critical insight into the role of 4f electrons in controlling the magnetism and structure of lanthanide intermetallics.
Loading next page...
 
/lp/aps_physical/role-of-4f-electrons-in-crystallographic-and-magnetic-complexity-zT106e8khh
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.064412
Publisher site
See Article on Publisher Site

Abstract

The functionality of many magnetic materials critically depends on first manipulating and then taking advantage of highly nonlinear changes of properties that occur during phase transformations. Unique to lanthanides, property-defining 4f electrons are highly localized and, as commonly accepted, play little to no role in chemical bonding. Yet here we demonstrate that the competition between 4f-electron energy landscapes of Dy (4f9) and Er (4f11) is the key element of the puzzle required to explain complex interplay of magnetic and structural features observed in Er1−xDyxCo2, and likely many other mixed lanthanide systems. Unlike the parent binaries—DyCo2 and ErCo2—Er1−xDyxCo2 exhibits two successive magnetostructural transitions: a first order at TC, followed by a second order in the ferrimagnetically ordered state. Supported by first-principles calculations, our results offer new opportunities for targeted design of magnetic materials with multiple functionalities, and also provide a critical insight into the role of 4f electrons in controlling the magnetism and structure of lanthanide intermetallics.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 9, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off