Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Resonant x-ray scattering reveals possible disappearance of magnetic order under hydrostatic pressure in the Kitaev candidate γ-Li2IrO3

Resonant x-ray scattering reveals possible disappearance of magnetic order under hydrostatic... Honeycomb iridates such as γ-Li2IrO3 are argued to realize Kitaev spin-anisotropic magnetic exchange, along with Heisenberg and possibly other couplings. While systems with pure Kitaev interactions are candidates to realize a quantum spin-liquid ground state, in γ-Li2IrO3 it has been shown that the presence of competing magnetic interactions leads to an incommensurate spiral spin order at ambient pressure below 38 K. We study the pressure sensitivity of this magnetically ordered state in single crystals of γ-Li2IrO3 using resonant x-ray scattering (RXS) under applied hydrostatic pressures of up to 3 GPa. RXS is a direct probe of electronic order, and we observe the abrupt disappearance of the qsp=(0.57,0,0) spiral order at a critical pressure Pc=1.4 GPa with no accompanying change in the symmetry of the lattice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Resonant x-ray scattering reveals possible disappearance of magnetic order under hydrostatic pressure in the Kitaev candidate γ-Li2IrO3

Resonant x-ray scattering reveals possible disappearance of magnetic order under hydrostatic pressure in the Kitaev candidate γ-Li2IrO3

Physical Review B , Volume 96 (2) – Jul 5, 2017

Abstract

Honeycomb iridates such as γ-Li2IrO3 are argued to realize Kitaev spin-anisotropic magnetic exchange, along with Heisenberg and possibly other couplings. While systems with pure Kitaev interactions are candidates to realize a quantum spin-liquid ground state, in γ-Li2IrO3 it has been shown that the presence of competing magnetic interactions leads to an incommensurate spiral spin order at ambient pressure below 38 K. We study the pressure sensitivity of this magnetically ordered state in single crystals of γ-Li2IrO3 using resonant x-ray scattering (RXS) under applied hydrostatic pressures of up to 3 GPa. RXS is a direct probe of electronic order, and we observe the abrupt disappearance of the qsp=(0.57,0,0) spiral order at a critical pressure Pc=1.4 GPa with no accompanying change in the symmetry of the lattice.

Loading next page...
 
/lp/aps_physical/resonant-x-ray-scattering-reveals-possible-disappearance-of-magnetic-0ikRIu1LnU

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
DOI
10.1103/PhysRevB.96.020402
Publisher site
See Article on Publisher Site

Abstract

Honeycomb iridates such as γ-Li2IrO3 are argued to realize Kitaev spin-anisotropic magnetic exchange, along with Heisenberg and possibly other couplings. While systems with pure Kitaev interactions are candidates to realize a quantum spin-liquid ground state, in γ-Li2IrO3 it has been shown that the presence of competing magnetic interactions leads to an incommensurate spiral spin order at ambient pressure below 38 K. We study the pressure sensitivity of this magnetically ordered state in single crystals of γ-Li2IrO3 using resonant x-ray scattering (RXS) under applied hydrostatic pressures of up to 3 GPa. RXS is a direct probe of electronic order, and we observe the abrupt disappearance of the qsp=(0.57,0,0) spiral order at a critical pressure Pc=1.4 GPa with no accompanying change in the symmetry of the lattice.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.