Relativistic corrections for non-Born-Oppenheimer molecular wave functions expanded in terms of complex explicitly correlated Gaussian functions

Relativistic corrections for non-Born-Oppenheimer molecular wave functions expanded in terms of... In our previous work S. Bubin , Chem. Phys. Lett. 647, 122 (2016)CHPLBC0009-261410.1016/j.cplett.2016.01.056, it was established that complex explicitly correlated one-center all-particle Gaussian functions (CECGs) provide effective basis functions for very accurate nonrelativistic molecular non-Born-Oppenheimer calculations. In this work, we advance the molecular CECGs approach further by deriving and implementing algorithms for calculating the leading relativistic corrections within this approach. The algorithms are tested in the calculations of the corrections for all 23 bound pure vibrational states of the HD+ ion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Relativistic corrections for non-Born-Oppenheimer molecular wave functions expanded in terms of complex explicitly correlated Gaussian functions

Preview Only

Relativistic corrections for non-Born-Oppenheimer molecular wave functions expanded in terms of complex explicitly correlated Gaussian functions

Abstract

In our previous work S. Bubin , Chem. Phys. Lett. 647, 122 (2016)CHPLBC0009-261410.1016/j.cplett.2016.01.056, it was established that complex explicitly correlated one-center all-particle Gaussian functions (CECGs) provide effective basis functions for very accurate nonrelativistic molecular non-Born-Oppenheimer calculations. In this work, we advance the molecular CECGs approach further by deriving and implementing algorithms for calculating the leading relativistic corrections within this approach. The algorithms are tested in the calculations of the corrections for all 23 bound pure vibrational states of the HD+ ion.
Loading next page...
 
/lp/aps_physical/relativistic-corrections-for-non-born-oppenheimer-molecular-wave-QXkTUxWisV
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.95.062509
Publisher site
See Article on Publisher Site

Abstract

In our previous work S. Bubin , Chem. Phys. Lett. 647, 122 (2016)CHPLBC0009-261410.1016/j.cplett.2016.01.056, it was established that complex explicitly correlated one-center all-particle Gaussian functions (CECGs) provide effective basis functions for very accurate nonrelativistic molecular non-Born-Oppenheimer calculations. In this work, we advance the molecular CECGs approach further by deriving and implementing algorithms for calculating the leading relativistic corrections within this approach. The algorithms are tested in the calculations of the corrections for all 23 bound pure vibrational states of the HD+ ion.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jun 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial