Reducing orbital occupancy in VO2 suppresses Mott physics while Peierls distortions persist

Reducing orbital occupancy in VO2 suppresses Mott physics while Peierls distortions persist The characteristics of the cooperative Mott-Peierls metal-insulator transition (MIT) of VO2 can be altered by employing epitaxial strain. While the most commonly used substrate for this purpose is isostructural rutile TiO2, thin films often suffer from interdiffusion of Ti ions near the interface. Exploiting this phenomena, we investigate the nature of interfacial V4+/Ti4+ cation intermixing and its effects on the MIT using scanning transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS), soft x-ray absorption spectroscopy (XAS), and hard x-ray photoelectron spectroscopy (HAXPES), along with supporting density functional theory (DFT) calculations. We find that the reduced orbital occupancy in highly Ti incorporated VO2 is responsible for suppressing the MIT. Interdiffused films are found to be metallic at all measured temperatures, despite a resolute dimerization inferred from x-ray absorption data at lower temperatures. Our results demonstrate that the Mott physics can be suppressed in doped VO2, while a lattice dimerization remains thermodynamically favorable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Reducing orbital occupancy in VO2 suppresses Mott physics while Peierls distortions persist

Abstract

The characteristics of the cooperative Mott-Peierls metal-insulator transition (MIT) of VO2 can be altered by employing epitaxial strain. While the most commonly used substrate for this purpose is isostructural rutile TiO2, thin films often suffer from interdiffusion of Ti ions near the interface. Exploiting this phenomena, we investigate the nature of interfacial V4+/Ti4+ cation intermixing and its effects on the MIT using scanning transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS), soft x-ray absorption spectroscopy (XAS), and hard x-ray photoelectron spectroscopy (HAXPES), along with supporting density functional theory (DFT) calculations. We find that the reduced orbital occupancy in highly Ti incorporated VO2 is responsible for suppressing the MIT. Interdiffused films are found to be metallic at all measured temperatures, despite a resolute dimerization inferred from x-ray absorption data at lower temperatures. Our results demonstrate that the Mott physics can be suppressed in doped VO2, while a lattice dimerization remains thermodynamically favorable.
Loading next page...
 
/lp/aps_physical/reducing-orbital-occupancy-in-vo2-suppresses-mott-physics-while-0xV6OMP6MR
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.081103
Publisher site
See Article on Publisher Site

Abstract

The characteristics of the cooperative Mott-Peierls metal-insulator transition (MIT) of VO2 can be altered by employing epitaxial strain. While the most commonly used substrate for this purpose is isostructural rutile TiO2, thin films often suffer from interdiffusion of Ti ions near the interface. Exploiting this phenomena, we investigate the nature of interfacial V4+/Ti4+ cation intermixing and its effects on the MIT using scanning transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS), soft x-ray absorption spectroscopy (XAS), and hard x-ray photoelectron spectroscopy (HAXPES), along with supporting density functional theory (DFT) calculations. We find that the reduced orbital occupancy in highly Ti incorporated VO2 is responsible for suppressing the MIT. Interdiffused films are found to be metallic at all measured temperatures, despite a resolute dimerization inferred from x-ray absorption data at lower temperatures. Our results demonstrate that the Mott physics can be suppressed in doped VO2, while a lattice dimerization remains thermodynamically favorable.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 8, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off