Reciprocal excitation of propagating spin waves by a laser pulse and their reciprocal mapping in magnetic metal films

Reciprocal excitation of propagating spin waves by a laser pulse and their reciprocal mapping in... Focused pulse-laser-induced propagating magnetostatic surface spin waves (MSSWs) were investigated using an all-optical space-time-resolved magneto-optical Kerr effect microscope in 20-nm-thick permalloy thin films to clarify reciprocity and symmetry of MSSW emission. The microscope setup was constructed with variable direction of the applied magnetic field, and the corresponding angular dependence was examined. MSSWs were reciprocally emitted from the laser spot, in contrast to the nonreciprocal emission obtained by the antenna method. Specifically, the observed excitation amplitude and phase were independent of the propagation and magnetization directions within experimental error. By transforming the data into wave number–frequency space, the MSSW dispersion relation was clearly identified within the wave number of 2–3 rad/μm and frequency of 10 GHz. These observations are consistent with the model of ultrafast modulation of out-of-plane shape magnetic anisotropy inside the focused laser spot. In addition to confirming the symmetric and reciprocal emission of laser-induced MSSWs, the study demonstrated that this technique can provide all-optical microscopic spectroscopy for MSSW in metals, such as Brillouin light-scattering technique. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Reciprocal excitation of propagating spin waves by a laser pulse and their reciprocal mapping in magnetic metal films

Preview Only

Reciprocal excitation of propagating spin waves by a laser pulse and their reciprocal mapping in magnetic metal films

Abstract

Focused pulse-laser-induced propagating magnetostatic surface spin waves (MSSWs) were investigated using an all-optical space-time-resolved magneto-optical Kerr effect microscope in 20-nm-thick permalloy thin films to clarify reciprocity and symmetry of MSSW emission. The microscope setup was constructed with variable direction of the applied magnetic field, and the corresponding angular dependence was examined. MSSWs were reciprocally emitted from the laser spot, in contrast to the nonreciprocal emission obtained by the antenna method. Specifically, the observed excitation amplitude and phase were independent of the propagation and magnetization directions within experimental error. By transforming the data into wave number–frequency space, the MSSW dispersion relation was clearly identified within the wave number of 2–3 rad/μm and frequency of 10 GHz. These observations are consistent with the model of ultrafast modulation of out-of-plane shape magnetic anisotropy inside the focused laser spot. In addition to confirming the symmetric and reciprocal emission of laser-induced MSSWs, the study demonstrated that this technique can provide all-optical microscopic spectroscopy for MSSW in metals, such as Brillouin light-scattering technique.
Loading next page...
 
/lp/aps_physical/reciprocal-excitation-of-propagating-spin-waves-by-a-laser-pulse-and-psX5EZHnvF
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.014438
Publisher site
See Article on Publisher Site

Abstract

Focused pulse-laser-induced propagating magnetostatic surface spin waves (MSSWs) were investigated using an all-optical space-time-resolved magneto-optical Kerr effect microscope in 20-nm-thick permalloy thin films to clarify reciprocity and symmetry of MSSW emission. The microscope setup was constructed with variable direction of the applied magnetic field, and the corresponding angular dependence was examined. MSSWs were reciprocally emitted from the laser spot, in contrast to the nonreciprocal emission obtained by the antenna method. Specifically, the observed excitation amplitude and phase were independent of the propagation and magnetization directions within experimental error. By transforming the data into wave number–frequency space, the MSSW dispersion relation was clearly identified within the wave number of 2–3 rad/μm and frequency of 10 GHz. These observations are consistent with the model of ultrafast modulation of out-of-plane shape magnetic anisotropy inside the focused laser spot. In addition to confirming the symmetric and reciprocal emission of laser-induced MSSWs, the study demonstrated that this technique can provide all-optical microscopic spectroscopy for MSSW in metals, such as Brillouin light-scattering technique.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off