Realizing anomalous anyonic symmetries at the surfaces of three-dimensional gauge theories

Realizing anomalous anyonic symmetries at the surfaces of three-dimensional gauge theories The hallmark of a two-dimensional (2d) topologically ordered phase is the existence of deconfined “anyon” excitations that have exotic braiding and exchange statistics, different from those of ordinary bosons or fermions. As opposed to conventional Landau-Ginzburg-Wilson phases, which are classified on the basis of the spontaneous breaking of an underlying symmetry, topologically ordered phases, such as those occurring in the fractional quantum Hall effect, are absolutely stable, not requiring any such symmetry. Recently, though, it has been realized that symmetries, which may still be present in such systems, can give rise to a host of new, distinct, many-body phases, all of which share the same underlying topological order. These “symmetry enriched” topological (SET) phases are distinguished not on the basis of anyon braiding statistics alone, but also by the symmetry properties of the anyons, such as their fractional charges, or the way that different anyons are permuted by the symmetry. Thus a useful approach to classifying SETs is to determine all possible such symmetry actions on the anyons that are algebraically consistent with the anyon statistics. Remarkably, however, there exist symmetry actions that, despite being algebraically consistent, cannot be realized in any physical system, and hence do not lead to valid 2d SETs. One class of such “anomalous” SETs, characterized by certain disallowed symmetry fractionalization patterns, finds a physical interpretation as an allowed surface state of certain three-dimensional (3d) short-range entangled phases, but another, characterized by some seemingly valid but anomalous permutation actions of the symmetry on the anyons and encoded in an H3(G,A) group cohomology class, has so far eluded a physical interpretation. In this work, we find a way to physically realize these anomalously permuting SETs at the surfaces of certain 3d long-range entangled phases, expanding our understanding of general anomalous SETs in two dimensions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Realizing anomalous anyonic symmetries at the surfaces of three-dimensional gauge theories

Preview Only

Realizing anomalous anyonic symmetries at the surfaces of three-dimensional gauge theories

Abstract

The hallmark of a two-dimensional (2d) topologically ordered phase is the existence of deconfined “anyon” excitations that have exotic braiding and exchange statistics, different from those of ordinary bosons or fermions. As opposed to conventional Landau-Ginzburg-Wilson phases, which are classified on the basis of the spontaneous breaking of an underlying symmetry, topologically ordered phases, such as those occurring in the fractional quantum Hall effect, are absolutely stable, not requiring any such symmetry. Recently, though, it has been realized that symmetries, which may still be present in such systems, can give rise to a host of new, distinct, many-body phases, all of which share the same underlying topological order. These “symmetry enriched” topological (SET) phases are distinguished not on the basis of anyon braiding statistics alone, but also by the symmetry properties of the anyons, such as their fractional charges, or the way that different anyons are permuted by the symmetry. Thus a useful approach to classifying SETs is to determine all possible such symmetry actions on the anyons that are algebraically consistent with the anyon statistics. Remarkably, however, there exist symmetry actions that, despite being algebraically consistent, cannot be realized in any physical system, and hence do not lead to valid 2d SETs. One class of such “anomalous” SETs, characterized by certain disallowed symmetry fractionalization patterns, finds a physical interpretation as an allowed surface state of certain three-dimensional (3d) short-range entangled phases, but another, characterized by some seemingly valid but anomalous permutation actions of the symmetry on the anyons and encoded in an H3(G,A) group cohomology class, has so far eluded a physical interpretation. In this work, we find a way to physically realize these anomalously permuting SETs at the surfaces of certain 3d long-range entangled phases, expanding our understanding of general anomalous SETs in two dimensions.
Loading next page...
 
/lp/aps_physical/realizing-anomalous-anyonic-symmetries-at-the-surfaces-of-three-9U0znnX5d2
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.045131
Publisher site
See Article on Publisher Site

Abstract

The hallmark of a two-dimensional (2d) topologically ordered phase is the existence of deconfined “anyon” excitations that have exotic braiding and exchange statistics, different from those of ordinary bosons or fermions. As opposed to conventional Landau-Ginzburg-Wilson phases, which are classified on the basis of the spontaneous breaking of an underlying symmetry, topologically ordered phases, such as those occurring in the fractional quantum Hall effect, are absolutely stable, not requiring any such symmetry. Recently, though, it has been realized that symmetries, which may still be present in such systems, can give rise to a host of new, distinct, many-body phases, all of which share the same underlying topological order. These “symmetry enriched” topological (SET) phases are distinguished not on the basis of anyon braiding statistics alone, but also by the symmetry properties of the anyons, such as their fractional charges, or the way that different anyons are permuted by the symmetry. Thus a useful approach to classifying SETs is to determine all possible such symmetry actions on the anyons that are algebraically consistent with the anyon statistics. Remarkably, however, there exist symmetry actions that, despite being algebraically consistent, cannot be realized in any physical system, and hence do not lead to valid 2d SETs. One class of such “anomalous” SETs, characterized by certain disallowed symmetry fractionalization patterns, finds a physical interpretation as an allowed surface state of certain three-dimensional (3d) short-range entangled phases, but another, characterized by some seemingly valid but anomalous permutation actions of the symmetry on the anyons and encoded in an H3(G,A) group cohomology class, has so far eluded a physical interpretation. In this work, we find a way to physically realize these anomalously permuting SETs at the surfaces of certain 3d long-range entangled phases, expanding our understanding of general anomalous SETs in two dimensions.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 24, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off