Realistic quantum critical point in one-dimensional two-impurity models

Realistic quantum critical point in one-dimensional two-impurity models We show that the two-impurity Anderson model exhibits an additional quantum critical point at infinitely many specific distances between both impurities for an inversion symmetric one-dimensional dispersion. Unlike the quantum critical point previously established, it is robust against particle-hole or parity symmetry breaking. The quantum critical point separates a spin doublet from a spin singlet ground state and is, therefore, protected. A finite single-particle tunneling t or an applied uniform gate voltage will drive the system across the quantum critical point. The discriminative magnetic properties of the different phases cause a jump in the spectral functions at low temperature, which might be useful for future spintronics devices. A local parity conservation will prevent the spin-spin correlation function from decaying to its equilibrium value after spin manipulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Realistic quantum critical point in one-dimensional two-impurity models

Preview Only

Realistic quantum critical point in one-dimensional two-impurity models

Abstract

We show that the two-impurity Anderson model exhibits an additional quantum critical point at infinitely many specific distances between both impurities for an inversion symmetric one-dimensional dispersion. Unlike the quantum critical point previously established, it is robust against particle-hole or parity symmetry breaking. The quantum critical point separates a spin doublet from a spin singlet ground state and is, therefore, protected. A finite single-particle tunneling t or an applied uniform gate voltage will drive the system across the quantum critical point. The discriminative magnetic properties of the different phases cause a jump in the spectral functions at low temperature, which might be useful for future spintronics devices. A local parity conservation will prevent the spin-spin correlation function from decaying to its equilibrium value after spin manipulations.
Loading next page...
 
/lp/aps_physical/realistic-quantum-critical-point-in-one-dimensional-two-impurity-etUgxmgDZ6
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.041109
Publisher site
See Article on Publisher Site

Abstract

We show that the two-impurity Anderson model exhibits an additional quantum critical point at infinitely many specific distances between both impurities for an inversion symmetric one-dimensional dispersion. Unlike the quantum critical point previously established, it is robust against particle-hole or parity symmetry breaking. The quantum critical point separates a spin doublet from a spin singlet ground state and is, therefore, protected. A finite single-particle tunneling t or an applied uniform gate voltage will drive the system across the quantum critical point. The discriminative magnetic properties of the different phases cause a jump in the spectral functions at low temperature, which might be useful for future spintronics devices. A local parity conservation will prevent the spin-spin correlation function from decaying to its equilibrium value after spin manipulations.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off