Rainbow scattering in the gravitational field of a compact object

Rainbow scattering in the gravitational field of a compact object We study the elastic scattering of a planar wave in the curved spacetime of a compact object such as a neutron star, via a heuristic model: a scalar field impinging upon a spherically symmetric uniform density star of radius R and mass M. For R<rc, there is a divergence in the deflection function at the light-ring radius rc=3GM/c2, which leads to spiral scattering (orbiting) and a backward glory; whereas for R>rc, there instead arises a stationary point in the deflection function which creates a caustic and rainbow scattering. As in nuclear rainbow scattering, there is an Airy-type oscillation on a Rutherford-like cross section, followed by a shadow zone. We show that, for R∼3.5GM/c2, the rainbow angle lies close to 180°, and thus there arises enhanced backscattering and glory. We explore possible implications for gravitational wave astronomy and dark matter models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Rainbow scattering in the gravitational field of a compact object

Preview Only

Rainbow scattering in the gravitational field of a compact object

Abstract

We study the elastic scattering of a planar wave in the curved spacetime of a compact object such as a neutron star, via a heuristic model: a scalar field impinging upon a spherically symmetric uniform density star of radius R and mass M. For R<rc, there is a divergence in the deflection function at the light-ring radius rc=3GM/c2, which leads to spiral scattering (orbiting) and a backward glory; whereas for R>rc, there instead arises a stationary point in the deflection function which creates a caustic and rainbow scattering. As in nuclear rainbow scattering, there is an Airy-type oscillation on a Rutherford-like cross section, followed by a shadow zone. We show that, for R∼3.5GM/c2, the rainbow angle lies close to 180°, and thus there arises enhanced backscattering and glory. We explore possible implications for gravitational wave astronomy and dark matter models.
Loading next page...
 
/lp/aps_physical/rainbow-scattering-in-the-gravitational-field-of-a-compact-object-D4RYTyDZTu
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.95.124055
Publisher site
See Article on Publisher Site

Abstract

We study the elastic scattering of a planar wave in the curved spacetime of a compact object such as a neutron star, via a heuristic model: a scalar field impinging upon a spherically symmetric uniform density star of radius R and mass M. For R<rc, there is a divergence in the deflection function at the light-ring radius rc=3GM/c2, which leads to spiral scattering (orbiting) and a backward glory; whereas for R>rc, there instead arises a stationary point in the deflection function which creates a caustic and rainbow scattering. As in nuclear rainbow scattering, there is an Airy-type oscillation on a Rutherford-like cross section, followed by a shadow zone. We show that, for R∼3.5GM/c2, the rainbow angle lies close to 180°, and thus there arises enhanced backscattering and glory. We explore possible implications for gravitational wave astronomy and dark matter models.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jun 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off