Radiative Rotational Lifetimes and State-Resolved Relative Detachment Cross Sections from Photodetachment Thermometry of Molecular Anions in a Cryogenic Storage Ring

Radiative Rotational Lifetimes and State-Resolved Relative Detachment Cross Sections from... Photodetachment thermometry on a beam of OH- in a cryogenic storage ring cooled to below 10 K is carried out using two-dimensional frequency- and time-dependent photodetachment spectroscopy over 20 min of ion storage. In equilibrium with the low-level blackbody field, we find an effective radiative temperature near 15 K with about 90% of all ions in the rotational ground state. We measure the J=1 natural lifetime (about 193 s) and determine the OH- rotational transition dipole moment with 1.5% uncertainty. We also measure rotationally dependent relative near-threshold photodetachment cross sections for photodetachment thermometry. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Radiative Rotational Lifetimes and State-Resolved Relative Detachment Cross Sections from Photodetachment Thermometry of Molecular Anions in a Cryogenic Storage Ring

Preview Only

Radiative Rotational Lifetimes and State-Resolved Relative Detachment Cross Sections from Photodetachment Thermometry of Molecular Anions in a Cryogenic Storage Ring

Abstract

Photodetachment thermometry on a beam of OH- in a cryogenic storage ring cooled to below 10 K is carried out using two-dimensional frequency- and time-dependent photodetachment spectroscopy over 20 min of ion storage. In equilibrium with the low-level blackbody field, we find an effective radiative temperature near 15 K with about 90% of all ions in the rotational ground state. We measure the J=1 natural lifetime (about 193 s) and determine the OH- rotational transition dipole moment with 1.5% uncertainty. We also measure rotationally dependent relative near-threshold photodetachment cross sections for photodetachment thermometry.
Loading next page...
 
/lp/aps_physical/radiative-rotational-lifetimes-and-state-resolved-relative-detachment-1OeV8jYzIf
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.023202
Publisher site
See Article on Publisher Site

Abstract

Photodetachment thermometry on a beam of OH- in a cryogenic storage ring cooled to below 10 K is carried out using two-dimensional frequency- and time-dependent photodetachment spectroscopy over 20 min of ion storage. In equilibrium with the low-level blackbody field, we find an effective radiative temperature near 15 K with about 90% of all ions in the rotational ground state. We measure the J=1 natural lifetime (about 193 s) and determine the OH- rotational transition dipole moment with 1.5% uncertainty. We also measure rotationally dependent relative near-threshold photodetachment cross sections for photodetachment thermometry.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 14, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off