Rabi noise spectroscopy of individual two-level tunneling defects

Rabi noise spectroscopy of individual two-level tunneling defects Understanding the nature of two-level tunneling defects is important for minimizing their disruptive effects in various nanodevices. By exploiting the resonant coupling of these defects to a superconducting qubit, one can probe and coherently manipulate them individually. In this work, we utilize a phase qubit to induce Rabi oscillations of single tunneling defects and measure their dephasing rates as a function of the defect's asymmetry energy, which is tuned by an applied strain. The dephasing rates scale quadratically with the external strain and are inversely proportional to the Rabi frequency. These results are analyzed and explained within a model of interacting defects, in which pure dephasing of coherent high-frequency (gigahertz) defects is caused by interaction with incoherent low-frequency thermally excited defects. Our analysis sets an upper bound for the relaxation rates of thermally excited defects interacting strongly with strain fields. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Rabi noise spectroscopy of individual two-level tunneling defects

Preview Only

Rabi noise spectroscopy of individual two-level tunneling defects

Abstract

Understanding the nature of two-level tunneling defects is important for minimizing their disruptive effects in various nanodevices. By exploiting the resonant coupling of these defects to a superconducting qubit, one can probe and coherently manipulate them individually. In this work, we utilize a phase qubit to induce Rabi oscillations of single tunneling defects and measure their dephasing rates as a function of the defect's asymmetry energy, which is tuned by an applied strain. The dephasing rates scale quadratically with the external strain and are inversely proportional to the Rabi frequency. These results are analyzed and explained within a model of interacting defects, in which pure dephasing of coherent high-frequency (gigahertz) defects is caused by interaction with incoherent low-frequency thermally excited defects. Our analysis sets an upper bound for the relaxation rates of thermally excited defects interacting strongly with strain fields.
Loading next page...
 
/lp/aps_physical/rabi-noise-spectroscopy-of-individual-two-level-tunneling-defects-0VgRtXmgdw
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.95.241409
Publisher site
See Article on Publisher Site

Abstract

Understanding the nature of two-level tunneling defects is important for minimizing their disruptive effects in various nanodevices. By exploiting the resonant coupling of these defects to a superconducting qubit, one can probe and coherently manipulate them individually. In this work, we utilize a phase qubit to induce Rabi oscillations of single tunneling defects and measure their dephasing rates as a function of the defect's asymmetry energy, which is tuned by an applied strain. The dephasing rates scale quadratically with the external strain and are inversely proportional to the Rabi frequency. These results are analyzed and explained within a model of interacting defects, in which pure dephasing of coherent high-frequency (gigahertz) defects is caused by interaction with incoherent low-frequency thermally excited defects. Our analysis sets an upper bound for the relaxation rates of thermally excited defects interacting strongly with strain fields.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jun 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off