Rabi noise spectroscopy of individual two-level tunneling defects

Rabi noise spectroscopy of individual two-level tunneling defects Understanding the nature of two-level tunneling defects is important for minimizing their disruptive effects in various nanodevices. By exploiting the resonant coupling of these defects to a superconducting qubit, one can probe and coherently manipulate them individually. In this work, we utilize a phase qubit to induce Rabi oscillations of single tunneling defects and measure their dephasing rates as a function of the defect's asymmetry energy, which is tuned by an applied strain. The dephasing rates scale quadratically with the external strain and are inversely proportional to the Rabi frequency. These results are analyzed and explained within a model of interacting defects, in which pure dephasing of coherent high-frequency (gigahertz) defects is caused by interaction with incoherent low-frequency thermally excited defects. Our analysis sets an upper bound for the relaxation rates of thermally excited defects interacting strongly with strain fields. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Rabi noise spectroscopy of individual two-level tunneling defects

Preview Only

Rabi noise spectroscopy of individual two-level tunneling defects

Abstract

Understanding the nature of two-level tunneling defects is important for minimizing their disruptive effects in various nanodevices. By exploiting the resonant coupling of these defects to a superconducting qubit, one can probe and coherently manipulate them individually. In this work, we utilize a phase qubit to induce Rabi oscillations of single tunneling defects and measure their dephasing rates as a function of the defect's asymmetry energy, which is tuned by an applied strain. The dephasing rates scale quadratically with the external strain and are inversely proportional to the Rabi frequency. These results are analyzed and explained within a model of interacting defects, in which pure dephasing of coherent high-frequency (gigahertz) defects is caused by interaction with incoherent low-frequency thermally excited defects. Our analysis sets an upper bound for the relaxation rates of thermally excited defects interacting strongly with strain fields.
Loading next page...
 
/lp/aps_physical/rabi-noise-spectroscopy-of-individual-two-level-tunneling-defects-0VgRtXmgdw
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.95.241409
Publisher site
See Article on Publisher Site

Abstract

Understanding the nature of two-level tunneling defects is important for minimizing their disruptive effects in various nanodevices. By exploiting the resonant coupling of these defects to a superconducting qubit, one can probe and coherently manipulate them individually. In this work, we utilize a phase qubit to induce Rabi oscillations of single tunneling defects and measure their dephasing rates as a function of the defect's asymmetry energy, which is tuned by an applied strain. The dephasing rates scale quadratically with the external strain and are inversely proportional to the Rabi frequency. These results are analyzed and explained within a model of interacting defects, in which pure dephasing of coherent high-frequency (gigahertz) defects is caused by interaction with incoherent low-frequency thermally excited defects. Our analysis sets an upper bound for the relaxation rates of thermally excited defects interacting strongly with strain fields.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jun 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial