Qubit entanglement across ε-near-zero media

Qubit entanglement across ε-near-zero media Currently, epsilon-near-zero (ENZ) materials have become important for controlling the propagation of light and enhancing by several orders of magnitude the Kerr and other nonlinearities. Given this advance it is important to examine the quantum electrodynamic processes and information tasks near ENZ materials. We study the entanglement between two two-level systems near ENZ materials and compare our results with the case where the ENZ material is replaced by a metal. It is shown that with ENZ materials substantial entanglement can be achieved over larger distances than for metal films. We show that this entanglement over large distances is due to the fact that one can not only have large emission rates but also large energy transmission rates at the epsilon-near-zero wavelength. This establishes the superiority of ENZ materials for studying processes specifically important for quantum information tasks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Qubit entanglement across ε-near-zero media

Preview Only

Qubit entanglement across ε-near-zero media

Abstract

Currently, epsilon-near-zero (ENZ) materials have become important for controlling the propagation of light and enhancing by several orders of magnitude the Kerr and other nonlinearities. Given this advance it is important to examine the quantum electrodynamic processes and information tasks near ENZ materials. We study the entanglement between two two-level systems near ENZ materials and compare our results with the case where the ENZ material is replaced by a metal. It is shown that with ENZ materials substantial entanglement can be achieved over larger distances than for metal films. We show that this entanglement over large distances is due to the fact that one can not only have large emission rates but also large energy transmission rates at the epsilon-near-zero wavelength. This establishes the superiority of ENZ materials for studying processes specifically important for quantum information tasks.
Loading next page...
 
/lp/aps_physical/qubit-entanglement-across-near-zero-media-Ahb33o5tHf
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.022308
Publisher site
See Article on Publisher Site

Abstract

Currently, epsilon-near-zero (ENZ) materials have become important for controlling the propagation of light and enhancing by several orders of magnitude the Kerr and other nonlinearities. Given this advance it is important to examine the quantum electrodynamic processes and information tasks near ENZ materials. We study the entanglement between two two-level systems near ENZ materials and compare our results with the case where the ENZ material is replaced by a metal. It is shown that with ENZ materials substantial entanglement can be achieved over larger distances than for metal films. We show that this entanglement over large distances is due to the fact that one can not only have large emission rates but also large energy transmission rates at the epsilon-near-zero wavelength. This establishes the superiority of ENZ materials for studying processes specifically important for quantum information tasks.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Aug 9, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off