Quasistationary solutions of scalar fields around collapsing self-interacting boson stars

Quasistationary solutions of scalar fields around collapsing self-interacting boson stars There is increasing numerical evidence that scalar fields can form long-lived quasibound states around black holes. Recent perturbative and numerical relativity calculations have provided further confirmation in a variety of physical systems, including both static and accreting black holes, and collapsing fermionic stars. In this work, we investigate this issue yet again in the context of gravitationally unstable boson stars leading to black-hole formation. We build a large sample of spherically symmetric initial models, both stable and unstable, incorporating a self-interaction potential with a quartic term. The three different outcomes of unstable models, namely, migration to the stable branch, total dispersion, and collapse to a black hole, are also present for self-interacting boson stars. Our simulations show that for black hole-forming models, a scalar-field remnant is found outside the black-hole horizon, oscillating at a different frequency than that of the original boson star. This result is in good agreement with recent spherically symmetric simulations of unstable Proca stars collapsing to black holes [N. Sanchis-Gual, C. Herdeiro, E. Radu, J. C. Degollado, and J. A. Font, Phys. Rev. D 95, 104028 (2017).PRVDAQ2470-001010.1103/PhysRevD.95.104028]. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Quasistationary solutions of scalar fields around collapsing self-interacting boson stars

Preview Only

Quasistationary solutions of scalar fields around collapsing self-interacting boson stars

Abstract

There is increasing numerical evidence that scalar fields can form long-lived quasibound states around black holes. Recent perturbative and numerical relativity calculations have provided further confirmation in a variety of physical systems, including both static and accreting black holes, and collapsing fermionic stars. In this work, we investigate this issue yet again in the context of gravitationally unstable boson stars leading to black-hole formation. We build a large sample of spherically symmetric initial models, both stable and unstable, incorporating a self-interaction potential with a quartic term. The three different outcomes of unstable models, namely, migration to the stable branch, total dispersion, and collapse to a black hole, are also present for self-interacting boson stars. Our simulations show that for black hole-forming models, a scalar-field remnant is found outside the black-hole horizon, oscillating at a different frequency than that of the original boson star. This result is in good agreement with recent spherically symmetric simulations of unstable Proca stars collapsing to black holes [N. Sanchis-Gual, C. Herdeiro, E. Radu, J. C. Degollado, and J. A. Font, Phys. Rev. D 95, 104028 (2017).PRVDAQ2470-001010.1103/PhysRevD.95.104028].
Loading next page...
 
/lp/aps_physical/quasistationary-solutions-of-scalar-fields-around-collapsing-self-sVJLbWNM6R
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.024015
Publisher site
See Article on Publisher Site

Abstract

There is increasing numerical evidence that scalar fields can form long-lived quasibound states around black holes. Recent perturbative and numerical relativity calculations have provided further confirmation in a variety of physical systems, including both static and accreting black holes, and collapsing fermionic stars. In this work, we investigate this issue yet again in the context of gravitationally unstable boson stars leading to black-hole formation. We build a large sample of spherically symmetric initial models, both stable and unstable, incorporating a self-interaction potential with a quartic term. The three different outcomes of unstable models, namely, migration to the stable branch, total dispersion, and collapse to a black hole, are also present for self-interacting boson stars. Our simulations show that for black hole-forming models, a scalar-field remnant is found outside the black-hole horizon, oscillating at a different frequency than that of the original boson star. This result is in good agreement with recent spherically symmetric simulations of unstable Proca stars collapsing to black holes [N. Sanchis-Gual, C. Herdeiro, E. Radu, J. C. Degollado, and J. A. Font, Phys. Rev. D 95, 104028 (2017).PRVDAQ2470-001010.1103/PhysRevD.95.104028].

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial