Quasicontinuous-Variable Quantum Computation with Collective Spins in Multipath Interferometers

Quasicontinuous-Variable Quantum Computation with Collective Spins in Multipath Interferometers Collective spins of large atomic samples trapped inside optical resonators can carry quantum information that can be processed in a way similar to quantum computation with continuous variables. It is shown here that by combining the resonators in multipath interferometers one can realize coupling between different samples, and that polynomial Hamiltonians can be constructed by repeated spin rotations and twisting induced by dispersive interaction of the atoms with light. Application can be expected in the efficient simulation of quantum systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Quasicontinuous-Variable Quantum Computation with Collective Spins in Multipath Interferometers

Preview Only

Quasicontinuous-Variable Quantum Computation with Collective Spins in Multipath Interferometers

Abstract

Collective spins of large atomic samples trapped inside optical resonators can carry quantum information that can be processed in a way similar to quantum computation with continuous variables. It is shown here that by combining the resonators in multipath interferometers one can realize coupling between different samples, and that polynomial Hamiltonians can be constructed by repeated spin rotations and twisting induced by dispersive interaction of the atoms with light. Application can be expected in the efficient simulation of quantum systems.
Loading next page...
 
/lp/aps_physical/quasicontinuous-variable-quantum-computation-with-collective-spins-in-RjuL2l6UFu
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.010502
Publisher site
See Article on Publisher Site

Abstract

Collective spins of large atomic samples trapped inside optical resonators can carry quantum information that can be processed in a way similar to quantum computation with continuous variables. It is shown here that by combining the resonators in multipath interferometers one can realize coupling between different samples, and that polynomial Hamiltonians can be constructed by repeated spin rotations and twisting induced by dispersive interaction of the atoms with light. Application can be expected in the efficient simulation of quantum systems.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial