Quasiadiabatic Grover search via the Wentzel-Kramers-Brillouin approximation

Quasiadiabatic Grover search via the Wentzel-Kramers-Brillouin approximation In various applications one is interested in quantum dynamics at intermediate evolution times, for which the adiabatic approximation is inadequate. Here we develop a quasiadiabatic approximation based on the WKB method, designed to work for such intermediate evolution times. We apply it to the problem of a single qubit in a time-varying magnetic field, and to the Hamiltonian Grover search problem, and show that already at first order the quasiadiabatic WKB captures subtle features of the dynamics that are missed by the adiabatic approximation. However, we also find that the method is sensitive to the type of interpolation schedule used in the Grover problem and can give rise to nonsensical results for the wrong schedule. Conversely, it reproduces the quadratic Grover speedup when the well-known optimal schedule is used. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Quasiadiabatic Grover search via the Wentzel-Kramers-Brillouin approximation

Preview Only

Quasiadiabatic Grover search via the Wentzel-Kramers-Brillouin approximation

Abstract

In various applications one is interested in quantum dynamics at intermediate evolution times, for which the adiabatic approximation is inadequate. Here we develop a quasiadiabatic approximation based on the WKB method, designed to work for such intermediate evolution times. We apply it to the problem of a single qubit in a time-varying magnetic field, and to the Hamiltonian Grover search problem, and show that already at first order the quasiadiabatic WKB captures subtle features of the dynamics that are missed by the adiabatic approximation. However, we also find that the method is sensitive to the type of interpolation schedule used in the Grover problem and can give rise to nonsensical results for the wrong schedule. Conversely, it reproduces the quadratic Grover speedup when the well-known optimal schedule is used.
Loading next page...
 
/lp/aps_physical/quasiadiabatic-grover-search-via-the-wentzel-kramers-brillouin-0fxy2NOlD0
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.012329
Publisher site
See Article on Publisher Site

Abstract

In various applications one is interested in quantum dynamics at intermediate evolution times, for which the adiabatic approximation is inadequate. Here we develop a quasiadiabatic approximation based on the WKB method, designed to work for such intermediate evolution times. We apply it to the problem of a single qubit in a time-varying magnetic field, and to the Hamiltonian Grover search problem, and show that already at first order the quasiadiabatic WKB captures subtle features of the dynamics that are missed by the adiabatic approximation. However, we also find that the method is sensitive to the type of interpolation schedule used in the Grover problem and can give rise to nonsensical results for the wrong schedule. Conversely, it reproduces the quadratic Grover speedup when the well-known optimal schedule is used.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 25, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial