Quantum parameter estimation with the Landau-Zener transition

Quantum parameter estimation with the Landau-Zener transition We investigate the fundamental limits in precision allowed by quantum mechanics from Landau-Zener transitions, concerning Hamiltonian parameters. While the Landau-Zener transition probabilities depend sensitively on the system parameters, much more precision may be obtained using the acquired phase, quantified by the quantum Fisher information. This information scales with a power of the elapsed time for the quantum case, whereas it is time independent if the transition probabilities alone are used. We add coherent control to the system and increase the permitted maximum precision in this time-dependent quantum system. The case of multiple passes before measurement, Landau-Zener-Stueckelberg interferometry, is considered, and we demonstrate that proper quantum control can cause the quantum Fisher information about the oscillation frequency to scale as T4, where T is the elapsed time. These results are foundational for frequency standards and quantum clocks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Quantum parameter estimation with the Landau-Zener transition

Preview Only

Quantum parameter estimation with the Landau-Zener transition

Abstract

We investigate the fundamental limits in precision allowed by quantum mechanics from Landau-Zener transitions, concerning Hamiltonian parameters. While the Landau-Zener transition probabilities depend sensitively on the system parameters, much more precision may be obtained using the acquired phase, quantified by the quantum Fisher information. This information scales with a power of the elapsed time for the quantum case, whereas it is time independent if the transition probabilities alone are used. We add coherent control to the system and increase the permitted maximum precision in this time-dependent quantum system. The case of multiple passes before measurement, Landau-Zener-Stueckelberg interferometry, is considered, and we demonstrate that proper quantum control can cause the quantum Fisher information about the oscillation frequency to scale as T4, where T is the elapsed time. These results are foundational for frequency standards and quantum clocks.
Loading next page...
 
/lp/aps_physical/quantum-parameter-estimation-with-the-landau-zener-transition-H7UwtJYZU0
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.020301
Publisher site
See Article on Publisher Site

Abstract

We investigate the fundamental limits in precision allowed by quantum mechanics from Landau-Zener transitions, concerning Hamiltonian parameters. While the Landau-Zener transition probabilities depend sensitively on the system parameters, much more precision may be obtained using the acquired phase, quantified by the quantum Fisher information. This information scales with a power of the elapsed time for the quantum case, whereas it is time independent if the transition probabilities alone are used. We add coherent control to the system and increase the permitted maximum precision in this time-dependent quantum system. The case of multiple passes before measurement, Landau-Zener-Stueckelberg interferometry, is considered, and we demonstrate that proper quantum control can cause the quantum Fisher information about the oscillation frequency to scale as T4, where T is the elapsed time. These results are foundational for frequency standards and quantum clocks.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Aug 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off