Quantum metrology matrix

Quantum metrology matrix Various strategies exist in quantum metrology, such as with or without ancillary system, with a fixed or optimized measurement, with or without monitoring the environment, etc. Different set of tools are usually needed for different strategies. In this article, we provide a unified framework for these different settings, in particular we introduce a quantum metrology matrix and show that the precision limits of different settings can all be obtained from the trace or the trace norm of the quantum metrology matrix. Furthermore, the probe state enters into the quantum metrology matrix linearly, which makes the identification of the optimal probe states, one of the main quests in quantum metrology, much more efficient than conventional methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Quantum metrology matrix

Preview Only

Quantum metrology matrix

Abstract

Various strategies exist in quantum metrology, such as with or without ancillary system, with a fixed or optimized measurement, with or without monitoring the environment, etc. Different set of tools are usually needed for different strategies. In this article, we provide a unified framework for these different settings, in particular we introduce a quantum metrology matrix and show that the precision limits of different settings can all be obtained from the trace or the trace norm of the quantum metrology matrix. Furthermore, the probe state enters into the quantum metrology matrix linearly, which makes the identification of the optimal probe states, one of the main quests in quantum metrology, much more efficient than conventional methods.
Loading next page...
 
/lp/aps_physical/quantum-metrology-matrix-k4VLd2gOVj
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.012310
Publisher site
See Article on Publisher Site

Abstract

Various strategies exist in quantum metrology, such as with or without ancillary system, with a fixed or optimized measurement, with or without monitoring the environment, etc. Different set of tools are usually needed for different strategies. In this article, we provide a unified framework for these different settings, in particular we introduce a quantum metrology matrix and show that the precision limits of different settings can all be obtained from the trace or the trace norm of the quantum metrology matrix. Furthermore, the probe state enters into the quantum metrology matrix linearly, which makes the identification of the optimal probe states, one of the main quests in quantum metrology, much more efficient than conventional methods.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off