Quantum electron transport in magnetically entangled subbands

Quantum electron transport in magnetically entangled subbands Transport properties of highly mobile two-dimensional (2D) electrons in symmetric GaAs quantum wells with two populated subbands placed in tilted magnetic fields are studied at high temperatures. Quantum positive magnetoresistance (QPMR) and magneto-intersubband resistance oscillations (MISO) are observed in quantizing magnetic fields, B⊥, applied perpendicular to the 2D layer. QPMR displays contributions from electrons with considerably different quantum lifetimes, τq(1,2), confirming the presence of two subbands in the studied system. MISO evolution with B⊥ agrees with the obtained quantum scattering times only if an additional reduction of the MISO magnitude is applied at small magnetic fields. This indicates the presence of a yet unknown mechanism leading to MISO damping. Application of an in-plane magnetic field produces a strong decrease of both QPMR and MISO magnitude. The reduction of QPMR is explained by spin splitting of Landau levels indicating a g factor, g≈0.4, which is considerably less than the g factor found in GaAs quantum well with a single subband populated. In contrast to QPMR, the decrease of MISO magnitude is largely related to the in-plane magnetic field induced entanglement between quantum levels in different subbands that, in addition, increases the MISO period. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Quantum electron transport in magnetically entangled subbands

Preview Only

Quantum electron transport in magnetically entangled subbands

Abstract

Transport properties of highly mobile two-dimensional (2D) electrons in symmetric GaAs quantum wells with two populated subbands placed in tilted magnetic fields are studied at high temperatures. Quantum positive magnetoresistance (QPMR) and magneto-intersubband resistance oscillations (MISO) are observed in quantizing magnetic fields, B⊥, applied perpendicular to the 2D layer. QPMR displays contributions from electrons with considerably different quantum lifetimes, τq(1,2), confirming the presence of two subbands in the studied system. MISO evolution with B⊥ agrees with the obtained quantum scattering times only if an additional reduction of the MISO magnitude is applied at small magnetic fields. This indicates the presence of a yet unknown mechanism leading to MISO damping. Application of an in-plane magnetic field produces a strong decrease of both QPMR and MISO magnitude. The reduction of QPMR is explained by spin splitting of Landau levels indicating a g factor, g≈0.4, which is considerably less than the g factor found in GaAs quantum well with a single subband populated. In contrast to QPMR, the decrease of MISO magnitude is largely related to the in-plane magnetic field induced entanglement between quantum levels in different subbands that, in addition, increases the MISO period.
Loading next page...
 
/lp/aps_physical/quantum-electron-transport-in-magnetically-entangled-subbands-FX91xyEtVe
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.045436
Publisher site
See Article on Publisher Site

Abstract

Transport properties of highly mobile two-dimensional (2D) electrons in symmetric GaAs quantum wells with two populated subbands placed in tilted magnetic fields are studied at high temperatures. Quantum positive magnetoresistance (QPMR) and magneto-intersubband resistance oscillations (MISO) are observed in quantizing magnetic fields, B⊥, applied perpendicular to the 2D layer. QPMR displays contributions from electrons with considerably different quantum lifetimes, τq(1,2), confirming the presence of two subbands in the studied system. MISO evolution with B⊥ agrees with the obtained quantum scattering times only if an additional reduction of the MISO magnitude is applied at small magnetic fields. This indicates the presence of a yet unknown mechanism leading to MISO damping. Application of an in-plane magnetic field produces a strong decrease of both QPMR and MISO magnitude. The reduction of QPMR is explained by spin splitting of Landau levels indicating a g factor, g≈0.4, which is considerably less than the g factor found in GaAs quantum well with a single subband populated. In contrast to QPMR, the decrease of MISO magnitude is largely related to the in-plane magnetic field induced entanglement between quantum levels in different subbands that, in addition, increases the MISO period.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off