Quantum electrodynamics in 2+1 dimensions with quenched disorder: Quantum critical states with interactions and disorder

Quantum electrodynamics in 2+1 dimensions with quenched disorder: Quantum critical states with... Quantum electrodynamics in 2+1 dimensions (QED3) is a strongly coupled conformal field theory (CFT) of a U(1) gauge field coupled to 2N two-component massless fermions. The N=2 CFT has been proposed as a ground state of the spin-1/2 kagome Heisenberg antiferromagnet. We study QED3 in the presence of weak quenched disorder in its two spatial directions. When the disorder explicitly breaks the fermion flavor symmetry from SU(2N) → U(1) × SU(N) but preserves time-reversal symmetry, we find that the theory flows to a nontrivial fixed line at nonzero disorder with a continuously varying dynamical critical exponent z>1. We determine the zero-temperature flavor (spin) conductivity along the critical line. Our calculations are performed in the large-N limit, and the disorder is handled using the replica method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Quantum electrodynamics in 2+1 dimensions with quenched disorder: Quantum critical states with interactions and disorder

Preview Only

Quantum electrodynamics in 2+1 dimensions with quenched disorder: Quantum critical states with interactions and disorder

Abstract

Quantum electrodynamics in 2+1 dimensions (QED3) is a strongly coupled conformal field theory (CFT) of a U(1) gauge field coupled to 2N two-component massless fermions. The N=2 CFT has been proposed as a ground state of the spin-1/2 kagome Heisenberg antiferromagnet. We study QED3 in the presence of weak quenched disorder in its two spatial directions. When the disorder explicitly breaks the fermion flavor symmetry from SU(2N) → U(1) × SU(N) but preserves time-reversal symmetry, we find that the theory flows to a nontrivial fixed line at nonzero disorder with a continuously varying dynamical critical exponent z>1. We determine the zero-temperature flavor (spin) conductivity along the critical line. Our calculations are performed in the large-N limit, and the disorder is handled using the replica method.
Loading next page...
 
/lp/aps_physical/quantum-electrodynamics-in-2-1-dimensions-with-quenched-disorder-U4Fox0ccb0
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.95.235146
Publisher site
See Article on Publisher Site

Abstract

Quantum electrodynamics in 2+1 dimensions (QED3) is a strongly coupled conformal field theory (CFT) of a U(1) gauge field coupled to 2N two-component massless fermions. The N=2 CFT has been proposed as a ground state of the spin-1/2 kagome Heisenberg antiferromagnet. We study QED3 in the presence of weak quenched disorder in its two spatial directions. When the disorder explicitly breaks the fermion flavor symmetry from SU(2N) → U(1) × SU(N) but preserves time-reversal symmetry, we find that the theory flows to a nontrivial fixed line at nonzero disorder with a continuously varying dynamical critical exponent z>1. We determine the zero-temperature flavor (spin) conductivity along the critical line. Our calculations are performed in the large-N limit, and the disorder is handled using the replica method.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jun 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial