Quantum charge pumps with topological phases in a Creutz ladder

Quantum charge pumps with topological phases in a Creutz ladder The quantum charge pumping phenomenon connects band topology through the dynamics of a one-dimensional quantum system. In terms of a microscopic model, the Su-Schrieffer-Heeger/Rice-Mele quantum pump continues to serve as a fruitful starting point for many considerations of topological physics. Here we present a generalized Creutz scheme as a distinct two-band quantum pump model. By noting that it undergoes two kinds of topological band transitions accompanying with a Zak-phase difference of π and 2π, respectively, various charge pumping schemes are studied by applying an elaborate Peierls phase substitution. Translating into real space, the transportation of quantized charges is a result of cooperative quantum interference effect. In particular, an all-flux quantum pump emerges which operates with time-varying fluxes only and transports two charge units. This makes cold atoms with artificial gauge fields a unique system where this kind of phenomena can be realized. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Quantum charge pumps with topological phases in a Creutz ladder

Preview Only

Quantum charge pumps with topological phases in a Creutz ladder

Abstract

The quantum charge pumping phenomenon connects band topology through the dynamics of a one-dimensional quantum system. In terms of a microscopic model, the Su-Schrieffer-Heeger/Rice-Mele quantum pump continues to serve as a fruitful starting point for many considerations of topological physics. Here we present a generalized Creutz scheme as a distinct two-band quantum pump model. By noting that it undergoes two kinds of topological band transitions accompanying with a Zak-phase difference of π and 2π, respectively, various charge pumping schemes are studied by applying an elaborate Peierls phase substitution. Translating into real space, the transportation of quantized charges is a result of cooperative quantum interference effect. In particular, an all-flux quantum pump emerges which operates with time-varying fluxes only and transports two charge units. This makes cold atoms with artificial gauge fields a unique system where this kind of phenomena can be realized.
Loading next page...
 
/lp/aps_physical/quantum-charge-pumps-with-topological-phases-in-a-creutz-ladder-0xf0vpIcZb
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.035139
Publisher site
See Article on Publisher Site

Abstract

The quantum charge pumping phenomenon connects band topology through the dynamics of a one-dimensional quantum system. In terms of a microscopic model, the Su-Schrieffer-Heeger/Rice-Mele quantum pump continues to serve as a fruitful starting point for many considerations of topological physics. Here we present a generalized Creutz scheme as a distinct two-band quantum pump model. By noting that it undergoes two kinds of topological band transitions accompanying with a Zak-phase difference of π and 2π, respectively, various charge pumping schemes are studied by applying an elaborate Peierls phase substitution. Translating into real space, the transportation of quantized charges is a result of cooperative quantum interference effect. In particular, an all-flux quantum pump emerges which operates with time-varying fluxes only and transports two charge units. This makes cold atoms with artificial gauge fields a unique system where this kind of phenomena can be realized.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 19, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial