Quantum causal graph dynamics

Quantum causal graph dynamics Consider a graph having quantum systems lying at each node. Suppose that the whole thing evolves in discrete time steps, according to a global, unitary causal operator. By causal we mean that information can only propagate at a bounded speed, with respect to the distance given by the graph. Suppose, moreover, that the graph itself is subject to the evolution, and may be driven to be in a quantum superposition of graphs—in accordance to the superposition principle. We show that these unitary causal operators must decompose as a finite-depth circuit of local unitary gates. This unifies a result on quantum cellular automata with another on reversible causal graph dynamics. Along the way we formalize a notion of causality which is valid in the context of quantum superpositions of time-varying graphs, and has a number of good properties. We discuss some of the implications for quantum gravity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Quantum causal graph dynamics

Preview Only

Quantum causal graph dynamics

Abstract

Consider a graph having quantum systems lying at each node. Suppose that the whole thing evolves in discrete time steps, according to a global, unitary causal operator. By causal we mean that information can only propagate at a bounded speed, with respect to the distance given by the graph. Suppose, moreover, that the graph itself is subject to the evolution, and may be driven to be in a quantum superposition of graphs—in accordance to the superposition principle. We show that these unitary causal operators must decompose as a finite-depth circuit of local unitary gates. This unifies a result on quantum cellular automata with another on reversible causal graph dynamics. Along the way we formalize a notion of causality which is valid in the context of quantum superpositions of time-varying graphs, and has a number of good properties. We discuss some of the implications for quantum gravity.
Loading next page...
 
/lp/aps_physical/quantum-causal-graph-dynamics-f5E56u1ExW
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.024026
Publisher site
See Article on Publisher Site

Abstract

Consider a graph having quantum systems lying at each node. Suppose that the whole thing evolves in discrete time steps, according to a global, unitary causal operator. By causal we mean that information can only propagate at a bounded speed, with respect to the distance given by the graph. Suppose, moreover, that the graph itself is subject to the evolution, and may be driven to be in a quantum superposition of graphs—in accordance to the superposition principle. We show that these unitary causal operators must decompose as a finite-depth circuit of local unitary gates. This unifies a result on quantum cellular automata with another on reversible causal graph dynamics. Along the way we formalize a notion of causality which is valid in the context of quantum superpositions of time-varying graphs, and has a number of good properties. We discuss some of the implications for quantum gravity.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off