Properties of 2+1-flavor QCD in the imaginary chemical potential region: A model approach

Properties of 2+1-flavor QCD in the imaginary chemical potential region: A model approach We study properties of 2+1-flavor QCD in the imaginary chemical potential region by using two approaches. One is a theoretical approach based on the QCD partition function, and the other is a qualitative one based on the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) model. In the theoretical approach, we clarify conditions imposed on the imaginary chemical potentials μf=iθfT to realize the Roberge-Weiss (RW) periodicity. Here, T is the temperature, the index f denotes the flavor, and θf are dimensionless chemical potentials. We also show that the RW periodicity is broken if any one of θf is fixed to a constant value. In order to visualize the condition, we use the PNJL model as a model possessing the RW periodicity and draw the phase diagram as a function of θu=θd≡θl for two conditions of θs=θl and θs=0. We also consider two cases, (μu,μd,μs)=(iθuT,iC1T,0) and (μu,μd,μs)=(iC2T,iC2T,iθsT); here, C1 and C2 are dimensionless constants, whereas θu and θs are treated as variables. For some choice of C1 (C2), the number density of the up (strange) quark becomes smooth in the entire region of θu (θs) even in the high T region. This property may be important for lattice QCD simulations in the imaginary chemical potential region, since it makes the analytic continuation more feasible. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Properties of 2+1-flavor QCD in the imaginary chemical potential region: A model approach

Preview Only

Properties of 2+1-flavor QCD in the imaginary chemical potential region: A model approach

Abstract

We study properties of 2+1-flavor QCD in the imaginary chemical potential region by using two approaches. One is a theoretical approach based on the QCD partition function, and the other is a qualitative one based on the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) model. In the theoretical approach, we clarify conditions imposed on the imaginary chemical potentials μf=iθfT to realize the Roberge-Weiss (RW) periodicity. Here, T is the temperature, the index f denotes the flavor, and θf are dimensionless chemical potentials. We also show that the RW periodicity is broken if any one of θf is fixed to a constant value. In order to visualize the condition, we use the PNJL model as a model possessing the RW periodicity and draw the phase diagram as a function of θu=θd≡θl for two conditions of θs=θl and θs=0. We also consider two cases, (μu,μd,μs)=(iθuT,iC1T,0) and (μu,μd,μs)=(iC2T,iC2T,iθsT); here, C1 and C2 are dimensionless constants, whereas θu and θs are treated as variables. For some choice of C1 (C2), the number density of the up (strange) quark becomes smooth in the entire region of θu (θs) even in the high T region. This property may be important for lattice QCD simulations in the imaginary chemical potential region, since it makes the analytic continuation more feasible.
Loading next page...
 
/lp/aps_physical/properties-of-2-1-flavor-qcd-in-the-imaginary-chemical-potential-zw0Ln6UQ0k
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.014028
Publisher site
See Article on Publisher Site

Abstract

We study properties of 2+1-flavor QCD in the imaginary chemical potential region by using two approaches. One is a theoretical approach based on the QCD partition function, and the other is a qualitative one based on the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) model. In the theoretical approach, we clarify conditions imposed on the imaginary chemical potentials μf=iθfT to realize the Roberge-Weiss (RW) periodicity. Here, T is the temperature, the index f denotes the flavor, and θf are dimensionless chemical potentials. We also show that the RW periodicity is broken if any one of θf is fixed to a constant value. In order to visualize the condition, we use the PNJL model as a model possessing the RW periodicity and draw the phase diagram as a function of θu=θd≡θl for two conditions of θs=θl and θs=0. We also consider two cases, (μu,μd,μs)=(iθuT,iC1T,0) and (μu,μd,μs)=(iC2T,iC2T,iθsT); here, C1 and C2 are dimensionless constants, whereas θu and θs are treated as variables. For some choice of C1 (C2), the number density of the up (strange) quark becomes smooth in the entire region of θu (θs) even in the high T region. This property may be important for lattice QCD simulations in the imaginary chemical potential region, since it makes the analytic continuation more feasible.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off