Propagation of Degenerate Band-Edge Modes Using Dual Nonidentical Coupled Transmission Lines

Propagation of Degenerate Band-Edge Modes Using Dual Nonidentical Coupled Transmission Lines Degenerate band-edge (DBE) modes are known for their exceptionally high field intensity at the nearly flat dispersion-diagram profile. Because of the latter property, resonances supported by these modes are associated with a very strong field at the band edge. DBE modes and similar resonances of this class have been typically realized by introducing anisotropic dielectric slabs in volumetric photonic crystals. By contrast, in this paper, we present an analytic model of DBE modes using a simple set of nonidentical coupled transmission lines. The unequal phase velocities of the supported waves supported by these transmission lines lead to mode degeneracy, that in turn provide quartic solutions of dispersion (ω-β) relations. The DBE mode appears as one these quartic solutions. As such, the proposed model generalizes the concept of DBE modes using the construct of nonidentical coupled transmission lines. In this paper, we also propose a propagation medium using a dual pair of nonidentical transmission lines. The medium is referred to as a “butterfly” structure and is composed of four coupled transmission lines. These four coupled transmission lines generate the TM01-like degenerate band-edge mode. This is done by coupling the TE modes supported on each pair of the transmission lines. Mode purity at the resonance frequency and the intense field profile on the axis are properties that can be exploited for high-power microwave sources. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Applied American Physical Society (APS)

Propagation of Degenerate Band-Edge Modes Using Dual Nonidentical Coupled Transmission Lines

Preview Only

Propagation of Degenerate Band-Edge Modes Using Dual Nonidentical Coupled Transmission Lines

Abstract

Degenerate band-edge (DBE) modes are known for their exceptionally high field intensity at the nearly flat dispersion-diagram profile. Because of the latter property, resonances supported by these modes are associated with a very strong field at the band edge. DBE modes and similar resonances of this class have been typically realized by introducing anisotropic dielectric slabs in volumetric photonic crystals. By contrast, in this paper, we present an analytic model of DBE modes using a simple set of nonidentical coupled transmission lines. The unequal phase velocities of the supported waves supported by these transmission lines lead to mode degeneracy, that in turn provide quartic solutions of dispersion (ω-β) relations. The DBE mode appears as one these quartic solutions. As such, the proposed model generalizes the concept of DBE modes using the construct of nonidentical coupled transmission lines. In this paper, we also propose a propagation medium using a dual pair of nonidentical transmission lines. The medium is referred to as a “butterfly” structure and is composed of four coupled transmission lines. These four coupled transmission lines generate the TM01-like degenerate band-edge mode. This is done by coupling the TE modes supported on each pair of the transmission lines. Mode purity at the resonance frequency and the intense field profile on the axis are properties that can be exploited for high-power microwave sources.
Loading next page...
 
/lp/aps_physical/propagation-of-degenerate-band-edge-modes-using-dual-nonidentical-TMgjhMOT9t
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
eISSN
2331-7019
D.O.I.
10.1103/PhysRevApplied.7.064030
Publisher site
See Article on Publisher Site

Abstract

Degenerate band-edge (DBE) modes are known for their exceptionally high field intensity at the nearly flat dispersion-diagram profile. Because of the latter property, resonances supported by these modes are associated with a very strong field at the band edge. DBE modes and similar resonances of this class have been typically realized by introducing anisotropic dielectric slabs in volumetric photonic crystals. By contrast, in this paper, we present an analytic model of DBE modes using a simple set of nonidentical coupled transmission lines. The unequal phase velocities of the supported waves supported by these transmission lines lead to mode degeneracy, that in turn provide quartic solutions of dispersion (ω-β) relations. The DBE mode appears as one these quartic solutions. As such, the proposed model generalizes the concept of DBE modes using the construct of nonidentical coupled transmission lines. In this paper, we also propose a propagation medium using a dual pair of nonidentical transmission lines. The medium is referred to as a “butterfly” structure and is composed of four coupled transmission lines. These four coupled transmission lines generate the TM01-like degenerate band-edge mode. This is done by coupling the TE modes supported on each pair of the transmission lines. Mode purity at the resonance frequency and the intense field profile on the axis are properties that can be exploited for high-power microwave sources.

Journal

Physical Review AppliedAmerican Physical Society (APS)

Published: Jun 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial