Probing many-body localization with neural networks

Probing many-body localization with neural networks We show that a simple artificial neural network trained on entanglement spectra of individual states of a many-body quantum system can be used to determine the transition between a many-body localized and a thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We employ a multilayer perceptron with a single hidden layer, which is trained on labeled entanglement spectra pertaining to the fully localized and fully thermal regimes. We then apply this network to classify spectra belonging to states in the transition region. For training, we use a cost function that contains, in addition to the usual error and regularization parts, a term that favors a confident classification of the transition region states. The resulting phase diagram is in good agreement with the one obtained by more conventional methods and can be computed for small systems. In particular, the neural network outperforms conventional methods in classifying individual eigenstates pertaining to a single disorder realization. It allows us to map out the structure of these eigenstates across the transition with spatial resolution. Furthermore, we analyze the network operation using the dreaming technique to show that the neural network correctly learns by itself the power-law structure of the entanglement spectra in the many-body localized regime. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Probing many-body localization with neural networks

Preview Only

Probing many-body localization with neural networks

Abstract

We show that a simple artificial neural network trained on entanglement spectra of individual states of a many-body quantum system can be used to determine the transition between a many-body localized and a thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We employ a multilayer perceptron with a single hidden layer, which is trained on labeled entanglement spectra pertaining to the fully localized and fully thermal regimes. We then apply this network to classify spectra belonging to states in the transition region. For training, we use a cost function that contains, in addition to the usual error and regularization parts, a term that favors a confident classification of the transition region states. The resulting phase diagram is in good agreement with the one obtained by more conventional methods and can be computed for small systems. In particular, the neural network outperforms conventional methods in classifying individual eigenstates pertaining to a single disorder realization. It allows us to map out the structure of these eigenstates across the transition with spatial resolution. Furthermore, we analyze the network operation using the dreaming technique to show that the neural network correctly learns by itself the power-law structure of the entanglement spectra in the many-body localized regime.
Loading next page...
 
/lp/aps_physical/probing-many-body-localization-with-neural-networks-TiR8uNQx59
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.95.245134
Publisher site
See Article on Publisher Site

Abstract

We show that a simple artificial neural network trained on entanglement spectra of individual states of a many-body quantum system can be used to determine the transition between a many-body localized and a thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We employ a multilayer perceptron with a single hidden layer, which is trained on labeled entanglement spectra pertaining to the fully localized and fully thermal regimes. We then apply this network to classify spectra belonging to states in the transition region. For training, we use a cost function that contains, in addition to the usual error and regularization parts, a term that favors a confident classification of the transition region states. The resulting phase diagram is in good agreement with the one obtained by more conventional methods and can be computed for small systems. In particular, the neural network outperforms conventional methods in classifying individual eigenstates pertaining to a single disorder realization. It allows us to map out the structure of these eigenstates across the transition with spatial resolution. Furthermore, we analyze the network operation using the dreaming technique to show that the neural network correctly learns by itself the power-law structure of the entanglement spectra in the many-body localized regime.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jun 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial