Primordial gravitational waves in supersolid inflation

Primordial gravitational waves in supersolid inflation Supersolid inflation is a class of inflationary theories that simultaneously breaks time and space reparametrization invariance during inflation, with distinctive features for the dynamics of cosmological fluctuations. We investigate concrete realizations of such a scenario, including non-minimal couplings between gravity and the fields driving inflation. We focus in particular on the dynamics of primordial gravitational waves and discuss how their properties depend on the pattern of symmetry breaking that we consider. Tensor modes can have a blue spectrum, and for the first time we build models in which the squeezed limit of primordial tensor bispectra can be parametrically enhanced with respect to standard single-field scenarios. At leading order in a perturbative expansion, the tensor-to-scalar ratio depends only on the parameter controlling the breaking of space reparametrization. It is independent from the quantities controlling the breaking of time reparametrization, and this represents a difference with respect to standard single-field inflationary models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Primordial gravitational waves in supersolid inflation

Preview Only

Primordial gravitational waves in supersolid inflation

Abstract

Supersolid inflation is a class of inflationary theories that simultaneously breaks time and space reparametrization invariance during inflation, with distinctive features for the dynamics of cosmological fluctuations. We investigate concrete realizations of such a scenario, including non-minimal couplings between gravity and the fields driving inflation. We focus in particular on the dynamics of primordial gravitational waves and discuss how their properties depend on the pattern of symmetry breaking that we consider. Tensor modes can have a blue spectrum, and for the first time we build models in which the squeezed limit of primordial tensor bispectra can be parametrically enhanced with respect to standard single-field scenarios. At leading order in a perturbative expansion, the tensor-to-scalar ratio depends only on the parameter controlling the breaking of space reparametrization. It is independent from the quantities controlling the breaking of time reparametrization, and this represents a difference with respect to standard single-field inflationary models.
Loading next page...
 
/lp/aps_physical/primordial-gravitational-waves-in-supersolid-inflation-YbHX9SjSDN
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.023508
Publisher site
See Article on Publisher Site

Abstract

Supersolid inflation is a class of inflationary theories that simultaneously breaks time and space reparametrization invariance during inflation, with distinctive features for the dynamics of cosmological fluctuations. We investigate concrete realizations of such a scenario, including non-minimal couplings between gravity and the fields driving inflation. We focus in particular on the dynamics of primordial gravitational waves and discuss how their properties depend on the pattern of symmetry breaking that we consider. Tensor modes can have a blue spectrum, and for the first time we build models in which the squeezed limit of primordial tensor bispectra can be parametrically enhanced with respect to standard single-field scenarios. At leading order in a perturbative expansion, the tensor-to-scalar ratio depends only on the parameter controlling the breaking of space reparametrization. It is independent from the quantities controlling the breaking of time reparametrization, and this represents a difference with respect to standard single-field inflationary models.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial