Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Preisach models of hysteresis driven by Markovian input processes

Preisach models of hysteresis driven by Markovian input processes We study the response of Preisach models of hysteresis to stochastically fluctuating external fields. We perform numerical simulations, which indicate that analytical expressions derived previously for the autocorrelation functions and power spectral densities of the Preisach model with uncorrelated input, hold asymptotically also if the external field shows exponentially decaying correlations. As a consequence, the mechanisms causing long-term memory and 1/f noise in Preisach models with uncorrelated inputs still apply in the presence of fast decaying input correlations. We collect additional evidence for the importance of the effective Preisach density previously introduced even for Preisach models with correlated inputs. Additionally, we present some results for the output of the Preisach model with uncorrelated input using analytical methods. It is found, for instance, that in order to produce the same long-time tails in the output, the elementary hysteresis loops of large width need to have a higher weight for the generic Preisach model than for the symmetric Preisach model. Further, we find autocorrelation functions and power spectral densities to be monotonically decreasing independently of the choice of input and Preisach density. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Preisach models of hysteresis driven by Markovian input processes

Physical Review E , Volume 96 (2) – Aug 9, 2017

Preisach models of hysteresis driven by Markovian input processes

Physical Review E , Volume 96 (2) – Aug 9, 2017

Abstract

We study the response of Preisach models of hysteresis to stochastically fluctuating external fields. We perform numerical simulations, which indicate that analytical expressions derived previously for the autocorrelation functions and power spectral densities of the Preisach model with uncorrelated input, hold asymptotically also if the external field shows exponentially decaying correlations. As a consequence, the mechanisms causing long-term memory and 1/f noise in Preisach models with uncorrelated inputs still apply in the presence of fast decaying input correlations. We collect additional evidence for the importance of the effective Preisach density previously introduced even for Preisach models with correlated inputs. Additionally, we present some results for the output of the Preisach model with uncorrelated input using analytical methods. It is found, for instance, that in order to produce the same long-time tails in the output, the elementary hysteresis loops of large width need to have a higher weight for the generic Preisach model than for the symmetric Preisach model. Further, we find autocorrelation functions and power spectral densities to be monotonically decreasing independently of the choice of input and Preisach density.

Loading next page...
 
/lp/aps_physical/preisach-models-of-hysteresis-driven-by-markovian-input-processes-cg0zUFAEy0

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
DOI
10.1103/PhysRevE.96.022117
pmid
28950525
Publisher site
See Article on Publisher Site

Abstract

We study the response of Preisach models of hysteresis to stochastically fluctuating external fields. We perform numerical simulations, which indicate that analytical expressions derived previously for the autocorrelation functions and power spectral densities of the Preisach model with uncorrelated input, hold asymptotically also if the external field shows exponentially decaying correlations. As a consequence, the mechanisms causing long-term memory and 1/f noise in Preisach models with uncorrelated inputs still apply in the presence of fast decaying input correlations. We collect additional evidence for the importance of the effective Preisach density previously introduced even for Preisach models with correlated inputs. Additionally, we present some results for the output of the Preisach model with uncorrelated input using analytical methods. It is found, for instance, that in order to produce the same long-time tails in the output, the elementary hysteresis loops of large width need to have a higher weight for the generic Preisach model than for the symmetric Preisach model. Further, we find autocorrelation functions and power spectral densities to be monotonically decreasing independently of the choice of input and Preisach density.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Aug 9, 2017

There are no references for this article.