Planck data versus large scale structure: Methods to quantify discordance

Planck data versus large scale structure: Methods to quantify discordance Discordance in the Λ cold dark matter cosmological model can be seen by comparing parameters constrained by cosmic microwave background (CMB) measurements to those inferred by probes of large scale structure. Recent improvements in observations, including final data releases from both Planck and SDSS-III BOSS, as well as improved astrophysical uncertainty analysis of CFHTLenS, allows for an update in the quantification of any tension between large and small scales. This paper is intended, primarily, as a discussion on the quantifications of discordance when comparing the parameter constraints of a model when given two different data sets. We consider Kullback-Leibler divergence, comparison of Bayesian evidences and other statistics which are sensitive to the mean, variance and shape of the distributions. However, as a byproduct, we present an update to the similar analysis in [R. A. Battye, T. Charnock, and A. Moss, Phys. Rev. D 91, 103508 (2015)PRVDAQ1550-799810.1103/PhysRevD.91.103508], where we find that, considering new data and treatment of priors, the constraints from the CMB and from a combination of large scale structure (LSS) probes are in greater agreement and any tension only persists to a minor degree. In particular, we find the parameter constraints from the combination of LSS probes which are most discrepant with the Planck2015+Pol+BAO parameter distributions can be quantified at a ∼2.55σ tension using the method introduced in [R. A. Battye, T. Charnock, and A. Moss, Phys. Rev. D 91, 103508 (2015)PRVDAQ1550-799810.1103/PhysRevD.91.103508]. If instead we use the distributions constrained by the combination of LSS probes which are in greatest agreement with those from Planck2015+Pol+BAO this tension is only 0.76σ. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Planck data versus large scale structure: Methods to quantify discordance

Preview Only

Planck data versus large scale structure: Methods to quantify discordance

Abstract

Discordance in the Λ cold dark matter cosmological model can be seen by comparing parameters constrained by cosmic microwave background (CMB) measurements to those inferred by probes of large scale structure. Recent improvements in observations, including final data releases from both Planck and SDSS-III BOSS, as well as improved astrophysical uncertainty analysis of CFHTLenS, allows for an update in the quantification of any tension between large and small scales. This paper is intended, primarily, as a discussion on the quantifications of discordance when comparing the parameter constraints of a model when given two different data sets. We consider Kullback-Leibler divergence, comparison of Bayesian evidences and other statistics which are sensitive to the mean, variance and shape of the distributions. However, as a byproduct, we present an update to the similar analysis in [R. A. Battye, T. Charnock, and A. Moss, Phys. Rev. D 91, 103508 (2015)PRVDAQ1550-799810.1103/PhysRevD.91.103508], where we find that, considering new data and treatment of priors, the constraints from the CMB and from a combination of large scale structure (LSS) probes are in greater agreement and any tension only persists to a minor degree. In particular, we find the parameter constraints from the combination of LSS probes which are most discrepant with the Planck2015+Pol+BAO parameter distributions can be quantified at a ∼2.55σ tension using the method introduced in [R. A. Battye, T. Charnock, and A. Moss, Phys. Rev. D 91, 103508 (2015)PRVDAQ1550-799810.1103/PhysRevD.91.103508]. If instead we use the distributions constrained by the combination of LSS probes which are in greatest agreement with those from Planck2015+Pol+BAO this tension is only 0.76σ.
Loading next page...
 
/lp/aps_physical/planck-data-versus-large-scale-structure-methods-to-quantify-1GR0GlrdeY
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.95.123535
Publisher site
See Article on Publisher Site

Abstract

Discordance in the Λ cold dark matter cosmological model can be seen by comparing parameters constrained by cosmic microwave background (CMB) measurements to those inferred by probes of large scale structure. Recent improvements in observations, including final data releases from both Planck and SDSS-III BOSS, as well as improved astrophysical uncertainty analysis of CFHTLenS, allows for an update in the quantification of any tension between large and small scales. This paper is intended, primarily, as a discussion on the quantifications of discordance when comparing the parameter constraints of a model when given two different data sets. We consider Kullback-Leibler divergence, comparison of Bayesian evidences and other statistics which are sensitive to the mean, variance and shape of the distributions. However, as a byproduct, we present an update to the similar analysis in [R. A. Battye, T. Charnock, and A. Moss, Phys. Rev. D 91, 103508 (2015)PRVDAQ1550-799810.1103/PhysRevD.91.103508], where we find that, considering new data and treatment of priors, the constraints from the CMB and from a combination of large scale structure (LSS) probes are in greater agreement and any tension only persists to a minor degree. In particular, we find the parameter constraints from the combination of LSS probes which are most discrepant with the Planck2015+Pol+BAO parameter distributions can be quantified at a ∼2.55σ tension using the method introduced in [R. A. Battye, T. Charnock, and A. Moss, Phys. Rev. D 91, 103508 (2015)PRVDAQ1550-799810.1103/PhysRevD.91.103508]. If instead we use the distributions constrained by the combination of LSS probes which are in greatest agreement with those from Planck2015+Pol+BAO this tension is only 0.76σ.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jun 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off