Piezoresistance of flexible tunneling-percolation networks

Piezoresistance of flexible tunneling-percolation networks We model changes in the conductivity of flexible composite films stressed by bending. By treating stress as a perturbation of the effective medium conductivity, we obtain an expression of the piezoresistance as a function of four material parameters. The model correctly predicts resistance spikes and their recovery under the action of viscoelastic forces, in good agreement with experimental observations over stress cycles. The theory may be used to design composite materials for high-sensitivity touch sensors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Piezoresistance of flexible tunneling-percolation networks

Preview Only

Piezoresistance of flexible tunneling-percolation networks

Abstract

We model changes in the conductivity of flexible composite films stressed by bending. By treating stress as a perturbation of the effective medium conductivity, we obtain an expression of the piezoresistance as a function of four material parameters. The model correctly predicts resistance spikes and their recovery under the action of viscoelastic forces, in good agreement with experimental observations over stress cycles. The theory may be used to design composite materials for high-sensitivity touch sensors.
Loading next page...
 
/lp/aps_physical/piezoresistance-of-flexible-tunneling-percolation-networks-4ebTfs8uFk
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.024205
Publisher site
See Article on Publisher Site

Abstract

We model changes in the conductivity of flexible composite films stressed by bending. By treating stress as a perturbation of the effective medium conductivity, we obtain an expression of the piezoresistance as a function of four material parameters. The model correctly predicts resistance spikes and their recovery under the action of viscoelastic forces, in good agreement with experimental observations over stress cycles. The theory may be used to design composite materials for high-sensitivity touch sensors.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 20, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off