Photoinduced charge-order melting dynamics in a one-dimensional interacting Holstein model

Photoinduced charge-order melting dynamics in a one-dimensional interacting Holstein model Transient quantum dynamics in an interacting fermion-phonon system are investigated with a focus on a charge order (CO) melting after a short optical-pulse irradiation and the roles of the quantum phonons in the transient dynamics. A spinless-fermion model in a one-dimensional chain coupled with local phonons is analyzed numerically. The infinite time-evolving block decimation algorithm is adopted as a reliable numerical method for one-dimensional quantum many-body systems. Numerical results for the photoinduced CO melting dynamics without phonons are well interpreted by the soliton picture for the CO domains. This interpretation is confirmed by numerical simulation of an artificial local excitation and the classical soliton model. In the case of large phonon frequencies corresponding to the antiadiabatic condition, CO melting is induced by propagations of the polaronic solitons with the renormalized soliton velocity. On the other hand, in the case of small phonon frequencies corresponding to the adiabatic condition, the first stage of the CO melting dynamics occurs due to the energy transfer from the fermionic to phononic systems, and the second stage is brought about by the soliton motions around the bottom of the soliton band. The analyses provide a standard reference for photoinduced CO melting dynamics in one-dimensional many-body quantum systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Photoinduced charge-order melting dynamics in a one-dimensional interacting Holstein model

Preview Only

Photoinduced charge-order melting dynamics in a one-dimensional interacting Holstein model

Abstract

Transient quantum dynamics in an interacting fermion-phonon system are investigated with a focus on a charge order (CO) melting after a short optical-pulse irradiation and the roles of the quantum phonons in the transient dynamics. A spinless-fermion model in a one-dimensional chain coupled with local phonons is analyzed numerically. The infinite time-evolving block decimation algorithm is adopted as a reliable numerical method for one-dimensional quantum many-body systems. Numerical results for the photoinduced CO melting dynamics without phonons are well interpreted by the soliton picture for the CO domains. This interpretation is confirmed by numerical simulation of an artificial local excitation and the classical soliton model. In the case of large phonon frequencies corresponding to the antiadiabatic condition, CO melting is induced by propagations of the polaronic solitons with the renormalized soliton velocity. On the other hand, in the case of small phonon frequencies corresponding to the adiabatic condition, the first stage of the CO melting dynamics occurs due to the energy transfer from the fermionic to phononic systems, and the second stage is brought about by the soliton motions around the bottom of the soliton band. The analyses provide a standard reference for photoinduced CO melting dynamics in one-dimensional many-body quantum systems.
Loading next page...
 
/lp/aps_physical/photoinduced-charge-order-melting-dynamics-in-a-one-dimensional-vLCtO0Vm3X
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.035154
Publisher site
See Article on Publisher Site

Abstract

Transient quantum dynamics in an interacting fermion-phonon system are investigated with a focus on a charge order (CO) melting after a short optical-pulse irradiation and the roles of the quantum phonons in the transient dynamics. A spinless-fermion model in a one-dimensional chain coupled with local phonons is analyzed numerically. The infinite time-evolving block decimation algorithm is adopted as a reliable numerical method for one-dimensional quantum many-body systems. Numerical results for the photoinduced CO melting dynamics without phonons are well interpreted by the soliton picture for the CO domains. This interpretation is confirmed by numerical simulation of an artificial local excitation and the classical soliton model. In the case of large phonon frequencies corresponding to the antiadiabatic condition, CO melting is induced by propagations of the polaronic solitons with the renormalized soliton velocity. On the other hand, in the case of small phonon frequencies corresponding to the adiabatic condition, the first stage of the CO melting dynamics occurs due to the energy transfer from the fermionic to phononic systems, and the second stage is brought about by the soliton motions around the bottom of the soliton band. The analyses provide a standard reference for photoinduced CO melting dynamics in one-dimensional many-body quantum systems.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 31, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial