Photoinduced blinking in a solid-state quantum system

Photoinduced blinking in a solid-state quantum system Solid-state single-photon emitters (SPEs) are one of the prime components of many quantum nanophotonics devices. In this work, we report on an unusual, photoinduced blinking phenomenon of SPEs in gallium nitride. This is shown to be due to the modification in the transition kinetics of the emitter, via the introduction of additional laser-activated states. We investigate and characterize the blinking effect on the brightness of the source and the statistics of the emitted photons. Combining second-order correlation and fluorescence trajectory measurements, we determine the photodynamics of the trap states and characterize power-dependent decay rates and characteristic “off”-time blinking. Our work sheds light into understanding solid-state quantum system dynamics and, specifically, power-induced blinking phenomena in SPEs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Photoinduced blinking in a solid-state quantum system

Preview Only

Photoinduced blinking in a solid-state quantum system

Abstract

Solid-state single-photon emitters (SPEs) are one of the prime components of many quantum nanophotonics devices. In this work, we report on an unusual, photoinduced blinking phenomenon of SPEs in gallium nitride. This is shown to be due to the modification in the transition kinetics of the emitter, via the introduction of additional laser-activated states. We investigate and characterize the blinking effect on the brightness of the source and the statistics of the emitted photons. Combining second-order correlation and fluorescence trajectory measurements, we determine the photodynamics of the trap states and characterize power-dependent decay rates and characteristic “off”-time blinking. Our work sheds light into understanding solid-state quantum system dynamics and, specifically, power-induced blinking phenomena in SPEs.
Loading next page...
 
/lp/aps_physical/photoinduced-blinking-in-a-solid-state-quantum-system-YK5rud6aAy
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.041203
Publisher site
See Article on Publisher Site

Abstract

Solid-state single-photon emitters (SPEs) are one of the prime components of many quantum nanophotonics devices. In this work, we report on an unusual, photoinduced blinking phenomenon of SPEs in gallium nitride. This is shown to be due to the modification in the transition kinetics of the emitter, via the introduction of additional laser-activated states. We investigate and characterize the blinking effect on the brightness of the source and the statistics of the emitted photons. Combining second-order correlation and fluorescence trajectory measurements, we determine the photodynamics of the trap states and characterize power-dependent decay rates and characteristic “off”-time blinking. Our work sheds light into understanding solid-state quantum system dynamics and, specifically, power-induced blinking phenomena in SPEs.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 12, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off